skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Explicit Directional Affine Extractors and Improved Hardness for Linear Branching Programs
Affine extractors give some of the best-known lower bounds for various computational models, such as AC⁰ circuits, parity decision trees, and general Boolean circuits. However, they are not known to give strong lower bounds for read-once branching programs (ROBPs). In a recent work, Gryaznov, Pudlák, and Talebanfard (CCC' 22) introduced a stronger version of affine extractors known as directional affine extractors, together with a generalization of ROBPs where each node can make linear queries, and showed that the former implies strong lower bound for a certain type of the latter known as strongly read-once linear branching programs (SROLBPs). Their main result gives explicit constructions of directional affine extractors for entropy k > 2n/3, which implies average-case complexity 2^{n/3-o(n)} against SROLBPs with exponentially small correlation. A follow-up work by Chattopadhyay and Liao (CCC' 23) improves the hardness to 2^{n-o(n)} at the price of increasing the correlation to polynomially large, via a new connection to sumset extractors introduced by Chattopadhyay and Li (STOC' 16) and explicit constructions of such extractors by Chattopadhyay and Liao (STOC' 22). Both works left open the questions of better constructions of directional affine extractors and improved average-case complexity against SROLBPs in the regime of small correlation. This paper provides a much more in-depth study of directional affine extractors, SROLBPs, and ROBPs. Our main results include: - An explicit construction of directional affine extractors with k = o(n) and exponentially small error, which gives average-case complexity 2^{n-o(n)} against SROLBPs with exponentially small correlation, thus answering the two open questions raised in previous works. - An explicit function in AC⁰ that gives average-case complexity 2^{(1-δ)n} against ROBPs with negligible correlation, for any constant δ > 0. Previously, no such average-case hardness is known, and the best size lower bound for any function in AC⁰ against ROBPs is 2^Ω(n). One of the key ingredients in our constructions is a new linear somewhere condenser for affine sources, which is based on dimension expanders. The condenser also leads to an unconditional improvement of the entropy requirement of explicit affine extractors with negligible error. We further show that the condenser also works for general weak random sources, under the Polynomial Freiman-Ruzsa Theorem in 𝖥₂ⁿ, recently proved by Gowers, Green, Manners, and Tao (arXiv' 23).  more » « less
Award ID(s):
1845349 2127575
PAR ID:
10620547
Author(s) / Creator(s):
;
Editor(s):
Santhanam, Rahul
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Volume:
300
ISSN:
1868-8969
ISBN:
978-3-95977-331-7
Page Range / eLocation ID:
10:1-10:14
Subject(s) / Keyword(s):
Randomness Extractors Affine Read-once Linear Branching Programs Low-degree polynomials AC⁰ circuits Theory of computation → Expander graphs and randomness extractors Theory of computation → Circuit complexity Theory of computation → Pseudorandomness and derandomization
Format(s):
Medium: X Size: 14 pages; 809177 bytes Other: application/pdf
Size(s):
14 pages 809177 bytes
Right(s):
Creative Commons Attribution 4.0 International license; info:eu-repo/semantics/openAccess
Sponsoring Org:
National Science Foundation
More Like this
  1. Ta-Shma, Amnon (Ed.)
    In a recent work, Gryaznov, Pudlák and Talebanfard (CCC '22) introduced a linear variant of read-once branching programs, with motivations from circuit and proof complexity. Such a read-once linear branching program is a branching program where each node is allowed to make 𝔽₂-linear queries, and is read-once in the sense that the queries on each path is linearly independent. As their main result, they constructed an explicit function with average-case complexity 2^{n/3-o(n)} against a slightly restricted model, which they call strongly read-once linear branching programs. The main tool in their lower bound result is a new type of extractor, called directional affine extractors, that they introduced. Our main result is an explicit function with 2^{n-o(n)} average-case complexity against the strongly read-once linear branching program model, which is almost optimal. This result is based on a new connection from this problem to sumset extractors, which is a randomness extractor model introduced by Chattopadhyay and Li (STOC '16) as a generalization of many other well-studied models including two-source extractors, affine extractors and small-space extractors. With this new connection, our lower bound naturally follows from a recent construction of sumset extractors by Chattopadhyay and Liao (STOC '22). In addition, we show that directional affine extractors imply sumset extractors in a restricted setting. We observe that such restricted sumset sources are enough to derive lower bounds, and obtain an arguably more modular proof of the lower bound by Gryaznov, Pudlák and Talebanfard. We also initiate a study of pseudorandomness against linear branching programs. Our main result here is a hitting set generator construction against regular linear branching programs with constant width. We derive this result based on a connection to Kakeya sets over finite fields. 
    more » « less
  2. A long line of work in the past two decades or so established close connections between several different pseudorandom objects and applications, including seeded or seedless non-malleable extractors, two source extractors, (bipartite) Ramsey graphs, privacy amplification protocols with an active adversary, non-malleable codes and many more. These connections essentially show that an asymptotically optimal construction of one central object will lead to asymptotically optimal solutions to all the others. However, despite considerable effort, previous works can get close but still lack one final step to achieve truly asymptotically optimal constructions. In this paper we provide the last missing link, thus simultaneously achieving explicit, asymptotically optimal constructions and solutions for various well studied extractors and applications, that have been the subjects of long lines of research. Our results include: 1. Asymptotically optimal seeded non-malleable extractors, which in turn give two source extractors for asymptotically optimal min-entropy of $$O(\log n)$$, explicit constructions of $$K$$-Ramsey graphs on $$N$$ vertices with $$K=\log^{O(1)} N$$, and truly optimal privacy amplification protocols with an active adversary. 2. Two source non-malleable extractors and affine non-malleable extractors for some linear min-entropy with exponentially small error, which in turn give the first explicit construction of non-malleable codes against $$2$$-split state tampering and affine tampering with constant rate and \emph{exponentially} small error. 3. Explicit extractors for affine sources, sumset sources, interleaved sources, and small space sources that achieve asymptotically optimal min-entropy of $$O(\log n)$ or $$2s+O(\log n)$$ (for space $$s$$ sources). 4. An explicit function that requires strongly linear read once branching programs of size $$2^{n-O(\log n)}$$, which is optimal up to the constant in $$O(\cdot)$$. Previously, even for standard read once branching programs, the best known size lower bound for an explicit function is $$2^{n-O(\log^2 n)}$$. 
    more » « less
  3. We give new upper and lower bounds on the power of several restricted classes of arbitrary-order read-once branching programs (ROBPs) and standard-order ROBPs (SOBPs) that have received significant attention in the literature on pseudorandomness for space-bounded computation. - Regular SOBPs of length n and width ⌊w(n+1)/2⌋ can exactly simulate general SOBPs of length n and width w, and moreover an n/2-o(n) blow-up in width is necessary for such a simulation. Our result extends and simplifies prior average-case simulations (Reingold, Trevisan, and Vadhan (STOC 2006), Bogdanov, Hoza, Prakriya, and Pyne (CCC 2022)), in particular implying that weighted pseudorandom generators (Braverman, Cohen, and Garg (SICOMP 2020)) for regular SOBPs of width poly(n) or larger automatically extend to general SOBPs. Furthermore, our simulation also extends to general (even read-many) oblivious branching programs. - There exist natural functions computable by regular SOBPs of constant width that are average-case hard for permutation SOBPs of exponential width. Indeed, we show that Inner-Product mod 2 is average-case hard for arbitrary-order permutation ROBPs of exponential width. - There exist functions computable by constant-width arbitrary-order permutation ROBPs that are worst-case hard for exponential-width SOBPs. - Read-twice permutation branching programs of subexponential width can simulate polynomial-width arbitrary-order ROBPs. 
    more » « less
  4. Guruswami, Venkatesan (Ed.)
    In a recent work, Chen, Hoza, Lyu, Tal and Wu (FOCS 2023) showed an improved error reduction framework for the derandomization of regular read-once branching programs (ROBPs). Their result is based on a clever modification to the inverse Laplacian perspective of space-bounded derandomization, which was originally introduced by Ahmadinejad, Kelner, Murtagh, Peebles, Sidford and Vadhan (FOCS 2020). In this work, we give an alternative error reduction framework for regular ROBPs. Our new framework is based on a binary recursive formula from the work of Chattopadhyay and Liao (CCC 2020), that they used to construct weighted pseudorandom generators (WPRGs) for general ROBPs. Based on our new error reduction framework, we give alternative proofs to the following results for regular ROBPs of length n and width w, both of which were proved in the work of Chen et al. using their error reduction: - There is a WPRG with error ε that has seed length Õ(log(n)(√{log(1/ε)}+log(w))+log(1/ε)). - There is a (non-black-box) deterministic algorithm which estimates the expectation of any such program within error ±ε with space complexity Õ(log(nw)⋅log log(1/ε)). This was first proved in the work of Ahmadinejad et al., but the proof by Chen et al. is simpler. Because of the binary recursive nature of our new framework, both of our proofs are based on a straightforward induction that is arguably simpler than the Laplacian-based proof in the work of Chen et al. In fact, because of its simplicity, our proof of the second result directly gives a slightly stronger claim: our algorithm computes a ε-singular value approximation (a notion of approximation introduced in a recent work by Ahmadinejad, Peebles, Pyne, Sidford and Vadhan (FOCS 2023)) of the random walk matrix of the given ROBP in space Õ(log(nw)⋅log log(1/ε)). It is not clear how to get this stronger result from the previous proofs. 
    more » « less
  5. Ta-Shma, Amnon (Ed.)
    We initiate the study of generalized AC⁰ circuits comprised of arbitrary unbounded fan-in gates which only need to be constant over inputs of Hamming weight ≥ k (up to negations of the input bits), which we denote GC⁰(k). The gate set of this class includes biased LTFs like the k-OR (outputs 1 iff ≥ k bits are 1) and k-AND (outputs 0 iff ≥ k bits are 0), and thus can be seen as an interpolation between AC⁰ and TC⁰. We establish a tight multi-switching lemma for GC⁰(k) circuits, which bounds the probability that several depth-2 GC⁰(k) circuits do not simultaneously simplify under a random restriction. We also establish a new depth reduction lemma such that coupled with our multi-switching lemma, we can show many results obtained from the multi-switching lemma for depth-d size-s AC⁰ circuits lifts to depth-d size-s^{.99} GC⁰(.01 log s) circuits with no loss in parameters (other than hidden constants). Our result has the following applications: - Size-2^Ω(n^{1/d}) depth-d GC⁰(Ω(n^{1/d})) circuits do not correlate with parity (extending a result of Håstad (SICOMP, 2014)). - Size-n^Ω(log n) GC⁰(Ω(log² n)) circuits with n^{.249} arbitrary threshold gates or n^{.499} arbitrary symmetric gates exhibit exponentially small correlation against an explicit function (extending a result of Tan and Servedio (RANDOM, 2019)). - There is a seed length O((log m)^{d-1}log(m/ε)log log(m)) pseudorandom generator against size-m depth-d GC⁰(log m) circuits, matching the AC⁰ lower bound of Håstad up to a log log m factor (extending a result of Lyu (CCC, 2022)). - Size-m GC⁰(log m) circuits have exponentially small Fourier tails (extending a result of Tal (CCC, 2017)). 
    more » « less