skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 21, 2026

Title: Organ structure and bacterial microbiogeography in a reproductive organ of the Hawaiian bobtail squid reveal dimensions of a defensive symbiosis
ABSTRACT Many plants and animals house symbiotic microorganisms in specialized tissues or organs. Here, we used multidimensionalin situimaging techniques to illuminate how host organ structure and bacterial microbiogeography contribute to the symbiotic function of an organ in the Hawaiian bobtail squid,Euprymna scolopes. Along with the well-studied light organ, femaleE. scolopesharbor a community of bacteria in the accessory nidamental gland (ANG). The ANG is a dense network of epithelium-lined tubules, some of which are dominated by a single bacterial taxon. These bacteria are deposited into squid eggs, where they defend the developing embryos from harmful biofouling. This study used a combination of imaging techniques to visualize different dimensions of the ANG and its bacterial communities. Imaging entire organs with light sheet microscopy revealed that the ANG is a composite tissue of individual, non-intersecting tubules that each harbor their own bacterial population. The organ is bisected, with tubules converging toward two points at the posterior end. At these points, tubules empty into a space where bacteria can mix with squid jelly to be deposited onto eggs. Observations of the symbiotic community correlated bacterial taxa with cell morphology and revealed that tubule populations varied: some tubules contained populations of mixed taxa, whereas others contained only one bacterial genus. Together, these data shed light on how bacterial populations interact within the ANG and how the host uses physical structure to maintain and employ a symbiotic bacterial population in a defensive context.IMPORTANCESequence-based microbiome studies have revealed much about how hosts interact with communities of symbiotic microbiota but often lack a spatial understanding of how microbes relate to each other and the host in which they reside. This study uses a combination of microscopy techniques to reveal how the structure of a symbiotic organ in the female bobtail squid,Euprymna scolopes, houses diverse, beneficial bacterial populations and deploys them for egg defense. These findings suggest that spatial partitioning may be key to harboring a diverse population of antimicrobial-producing bacteria and establishing a foundation for further understanding how host structures mediate symbiotic interactions.  more » « less
Award ID(s):
2247195
PAR ID:
10620642
Author(s) / Creator(s):
; ; ;
Editor(s):
Rudi, Knut
Publisher / Repository:
American Society for Microbiology
Date Published:
Journal Name:
Applied and Environmental Microbiology
Volume:
91
Issue:
5
ISSN:
0099-2240
Page Range / eLocation ID:
e0216324
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rudi, Knut (Ed.)
    ABSTRACT Functional studies of host-microbe interactions benefit from natural model systems that enable the exploration of molecular mechanisms at the host-microbe interface. BioluminescentVibrio fischericolonize the light organ of the Hawaiian bobtail squid,Euprymna scolopes, and this binary model has enabled advances in understanding host-microbe communication, colonization specificity,in vivobiofilms, intraspecific competition, and quorum sensing. The hummingbird bobtail squid,Euprymna berryi,can be generationally bred and maintained in lab settings and has had multiple genes deleted by CRISPR approaches. The prospect of expanding the utility of the light organ model system by producing multigenerational host lines led us to determine the extent to which theE. berryilight organ symbiosis parallels known processes inE. scolopes. However, the nature of theE. berryilight organ, including its microbial constituency and specificity for microbial partners, has not been examined. In this report, we isolated bacteria fromE. berryianimals and tank water. Assays of bacterial behaviors required in the host, as well as host responses to bacterial colonization, illustrate largely parallel phenotypes inE. berryiandE. scolopeshatchlings. This study revealsE. berryito be a valuable comparative model to complement studies inE. scolopes.IMPORTANCEMicrobiome studies have been substantially advanced by model systems that enable functional interrogation of the roles of the partners and the molecular communication between those partners. TheEuprymna scolopes-Vibrio fischerisystem has contributed foundational knowledge, revealing key roles for bacterial quorum sensing broadly and in animal hosts, for bacteria in stimulating animal development, for bacterial motility in accessing host sites, and forin vivobiofilm formation in development and specificity of an animal’s microbiome.Euprymna berryiis a second bobtail squid host, and one that has recently been shown to be robust to laboratory husbandry and amenable to gene knockout. This study identifiesE. berryias a strong symbiosis model host due to features that are conserved with those ofE. scolopes, which will enable the extension of functional studies in bobtail squid symbioses. 
    more » « less
  2. Rudi, Knut (Ed.)
    ABSTRACT Many female squids and cuttlefishes have a symbiotic reproductive organ called the accessory nidamental gland (ANG) that hosts a bacterial consortium involved with egg defense against pathogens and fouling organisms. While the ANG is found in multiple cephalopod families, little is known about the global microbial diversity of these ANG bacterial symbionts. We used 16S rRNA gene community analysis to characterize the ANG microbiome from different cephalopod species and assess the relationship between host and symbiont phylogenies. The ANG microbiome of 11 species of cephalopods from four families (superorder: Decapodiformes) that span seven geographic locations was characterized. Bacteria of classAlphaproteobacteria, Gammaproteobacteria, andFlavobacteriiawere found in all species, yet analysis of amplicon sequence variants by multiple distance metrics revealed a significant difference between ANG microbiomes of cephalopod families (weighted/unweighted UniFrac, Bray–Curtis,P= 0.001). Despite being collected from widely disparate geographic locations, members of the family Sepiolidae (bobtail squid) shared many bacterial taxa including (~50%)Opitutae(Verrucomicrobia) andRuegeria(Alphaproteobacteria) species. Furthermore, we tested for phylosymbiosis and found a positive correlation between host phylogenetic distance and bacterial community dissimilarity (Mantel testr= 0.7). These data suggest that closely related sepiolids select for distinct symbionts from similar bacterial taxa. Overall, the ANGs of different cephalopod species harbor distinct microbiomes and thus offer a diverse symbiont community to explore antimicrobial activity and other functional roles in host fitness. IMPORTANCEMany aquatic organisms recruit microbial symbionts from the environment that provide a variety of functions, including defense from pathogens. Some female cephalopods (squids, bobtail squids, and cuttlefish) have a reproductive organ called the accessory nidamental gland (ANG) that contains a bacterial consortium that protects eggs from pathogens. Despite the wide distribution of these cephalopods, whether they share similar microbiomes is unknown. Here, we studied the microbial diversity of the ANG in 11 species of cephalopods distributed over a broad geographic range and representing 15–120 million years of host divergence. The ANG microbiomes shared some bacterial taxa, but each cephalopod species had unique symbiotic members. Additionally, analysis of host–symbiont phylogenies suggests that the evolutionary histories of the partners have been important in shaping the ANG microbiome. This study advances our knowledge of cephalopod–bacteria relationships and provides a foundation to explore defensive symbionts in other systems. 
    more » « less
  3. Teixeira, Luis (Ed.)
    The regulatory noncoding small RNAs (sRNAs) of bacteria are key elements influencing gene expression; however, there has been little evidence that beneficial bacteria use these molecules to communicate with their animal hosts. We report here that the bacterial sRNA SsrA plays an essential role in the light-organ symbiosis between Vibrio fischeri and the squid Euprymna scolopes . The symbionts load SsrA into outer membrane vesicles, which are transported specifically into the epithelial cells surrounding the symbiont population in the light organ. Although an SsrA-deletion mutant (Δ ssrA ) colonized the host to a normal level after 24 h, it produced only 2/10 the luminescence per bacterium, and its persistence began to decline by 48 h. The host’s response to colonization by the Δ ssrA strain was also abnormal: the epithelial cells underwent premature swelling, and host robustness was reduced. Most notably, when colonized by the Δ ssrA strain, the light organ differentially up-regulated 10 genes, including several encoding heightened immune-function or antimicrobial activities. This study reveals the potential for a bacterial symbiont’s sRNAs not only to control its own activities but also to trigger critical responses promoting homeostasis in its host. In the absence of this communication, there are dramatic fitness consequences for both partners. 
    more » « less
  4. ABSTRACT Microbes live in complex microniches within host tissues, but how symbiotic partners communicate to create such niches during development remains largely unexplored. Using confocal microscopy and symbiont genetics, we characterized the shaping of host microenvironments during light organ colonization of the squid Euprymna scolopes by the bacterium Vibrio fischeri . During embryogenesis, three pairs of invaginations form sequentially on the organ’s surface, producing pores that lead to interior compressed tubules at different stages of development. After hatching, these areas expand, allowing V. fischeri cells to enter and migrate ∼120 μm through three anatomically distinct regions before reaching blind-ended crypt spaces. A dynamic gatekeeper, or bottleneck, connects these crypts with the migration path. Once V. fischeri cells have entered the crypts, the bottlenecks narrow, and colonization by the symbiont population becomes spatially restricted. The actual timing of constriction and restriction varies with crypt maturity and with different V. fischeri strains. Subsequently, starting with the first dawn following colonization, the bottleneck controls a lifelong cycle of dawn-triggered expulsions of most of the symbionts into the environment and a subsequent regrowth in the crypts. Unlike other developmental phenotypes, bottleneck constriction is not induced by known microbe-associated molecular patterns (MAMPs) or by V. fischeri - produced bioluminescence, but it does require metabolically active symbionts. Further, while symbionts in the most mature crypts have a higher proportion of live cells and a greater likelihood of expulsion at dawn, they have a lower resistance to antibiotics. The overall dynamics of these distinct microenvironments reflect the complexity of the host-symbiont dialogue. IMPORTANCE The complexity, inaccessibility, and time scales of initial colonization of most animal microbiomes present challenges for the characterization of how the bacterial symbionts influence the form and function of tissues in the minutes to hours following the initial interaction of the partners. Here, we use the naturally occurring binary squid-vibrio association to explore this phenomenon. Imaging of the spatiotemporal landscape of this symbiosis during its onset provides a window into the impact of differences in both host-tissue maturation and symbiont strain phenotypes on the establishment of a dynamically stable symbiotic system. These data provide evidence that the symbionts shape the host-tissue landscape and that tissue maturation impacts the influence of strain-level differences on the daily rhythms of the symbiosis, the competitiveness for colonization, and antibiotic sensitivity. 
    more » « less
  5. Summary A key regulatory decision for many bacteria is the switch between biofilm formation and motile dispersal, and this dynamic is well illustrated in the light‐organ symbiosis between the bioluminescent bacteriumVibrio fischeriand the Hawaiian bobtail squid. Biofilm formation mediated by thesypgene cluster helpsV. fischeritransition from a dispersed planktonic lifestyle to a robust aggregate on the surface of the nascent symbiotic organ. However, the bacteria must then swim to pores and down into the deeper crypt tissues that they ultimately colonize. A number of positive and negative regulators controlsypexpression and biofilm formation, but until recently the environmental inputs controlling this clash between opposing regulatory mechanisms have been unclear. Thompsonet al. have now shown that Syp‐mediated biofilms can be repressed by a well‐known host‐derived molecule: nitric oxide. This regulation is accomplished by the NO sensor HnoX exerting control over the biofilm regulator HahK. The discoveries reported here by Thompsonet al. cast new light on a critical early stage of symbiotic initiation in theV. fischeri‐squid model symbiosis, and more broadly it adds to a growing understanding of the role(s) that NO and HnoX play in biofilm regulation by many bacteria. 
    more » « less