Coronal mass ejections (CMEs) are often associated with X-ray (SXR) flares powered by magnetic reconnection in the low corona, while the CME shocks in the upper corona and interplanetary (IP) space accelerate electrons often producing the type II radio bursts. The CME and the reconnection event are part of the same energy release process as highlighted by the correlation between reconnection flux (ϕrec) that quantifies the strength of the released magnetic free energy during the SXR flare, and the CME kinetic energy that drives the IP shocks leading to type II bursts. Unlike the Sun, these physical parameters cannot be directly inferred in stellar observations. Hence, scaling laws between unresolved sun-as-a-star observables, namely SXR luminosity (LX) and type II luminosity (LR), and the physical properties of the associated dynamical events are crucial. Such scaling laws also provide insights into the interconnections between the particle acceleration processes across low-corona to IP space during solar-stellar “flare-CME-type II” events. Using long-term solar data in the SXR to radio waveband, we derived a scaling law between two novel power metrics for the flare and CME-associated processes. The metrics of “flare power” (Pflare = √(LXϕrec)) and “CME power” (PCME = √(LRVCME2)), whereVCMEis the CME speed, scale asPflare ∝ PCME0.76 ± 0.04. In addition,LXandϕrecshow power-law trends withPCMEwith indices of 1.12 ± 0.05 and 0.61 ± 0.05, respectively. These power laws help infer the spatially resolved physical parameters,VCMEandϕrec, from disk-averaged observables,LXandLRduring solar-stellar flare-CME-type II events.
more »
« less
A 7 Day Multiwavelength Flare Campaign on AU Mic. I. High-time-resolution Light Curves and the Thermal Empirical Neupert Effect
Abstract We present light curves and flares from a 7 day, multiwavelength observational campaign of AU Mic, a young and active dM1e star with exoplanets and a debris disk. We report on 73 unique flares between the X-ray to optical data. We use high-time-resolution near-UV (NUV) photometry and soft X-ray (SXR) data from the X-ray Multi-Mirror Mission to study the empirical Neupert effect, which correlates the gradual and impulsive phase flaring emissions. We find that 65% (30 of 46) flares do not follow the Neupert effect, which is 3 times more excursions than seen in solar flares, and propose a four-part Neupert effect classification (Neupert, quasi-Neupert, non-Neupert types I and II) to explain the multiwavelength responses. While the SXR emission generally lags behind the NUV as expected from the chromospheric evaporation flare models, the Neupert effect is more prevalent in larger, more impulsive flares. Preliminary flaring rate analysis with X-ray andU-band data suggests that previously estimated energy ratios hold for a collection of flares observed over the same time period, but not necessarily for an individual, multiwavelength flare. These results imply that one model cannot explain all stellar flares and care should be taken when extrapolating between wavelength regimes. Future work will expand wavelength coverage using radio data to constrain the nonthermal empirical and theoretical Neupert effects to better refine models and bridge the gap between stellar and solar flare physics.
more »
« less
- Award ID(s):
- 2108373
- PAR ID:
- 10620778
- Publisher / Repository:
- IOP
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 951
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 33
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The optical and near-ultraviolet (NUV) continuum radiation in M-dwarf flares is thought to be the impulsive response of the lower stellar atmosphere to magnetic energy release and electron acceleration at coronal altitudes. This radiation is sometimes interpreted as evidence of a thermal photospheric spectrum withT≈ 104K. However, calculations show that standard solar flare coronal electron beams lose their energy in a thick target of gas in the upper and middle chromosphere (log10column mass/[g cm−2] ≲ −3). At larger beam injection fluxes, electric fields and instabilities are expected to further inhibit propagation to low altitudes. We show that recent numerical solutions of the time-dependent equations governing the power-law electrons and background coronal plasma (Langmuir and ion-acoustic) waves from Kontar et al. produce order-of-magnitude larger heating rates than those that occur in the deep chromosphere through standard solar flare electron beam power-law distributions. We demonstrate that the redistribution of beam energy aboveE≳ 100 keV in this theory results in a local heating maximum that is similar to a radiative-hydrodynamic model with a large, low-energy cutoff and a hard power-law index. We use this semiempirical forward-modeling approach to produce opaque NUV and optical continua at gas temperaturesT≳ 12,000 K over the deep chromosphere with log10column mass/[g cm−2] of −1.2 to −2.3. These models explain the color temperatures and Balmer jump strengths in high-cadence M-dwarf flare observations, and they clarify the relation among atmospheric, radiation, and optical color temperatures in stellar flares.more » « less
-
When and where the magnetic field energy is released and converted in eruptive solar flares remains an outstanding topic in solar physics. To shed light on this question, here we report multiwavelength observations of a C9.4-class eruptive limb flare that occurred on 2017 August 20. The flare, accompanied by a magnetic flux rope eruption and a white light coronal mass ejection, features three post-impulsive X-ray and microwave bursts immediately following its main impulsive phase. For each burst, both microwave and X-ray imaging suggest that the nonthermal electrons are located in the above-the-loop-top region. Interestingly, contrary to many other flares, the peak flux of the three post-impulsive microwave and X-ray bursts shows an increase for later bursts. Spectral analysis reveals that the sources have a hardening spectral index, suggesting a more efficient electron acceleration into the later post-impulsive bursts. We observe a positive correlation between the acceleration of the magnetic flux rope and the nonthermal energy release during the post-impulsive bursts in the same event. Intriguingly, different from some other eruptive events, this correlation does not hold for the main impulse phase of this event, which we interpret as energy release due to the tether-cutting reconnection before the primary flux rope acceleration occurs. In addition, using footpoint brightenings at conjugate flare ribbons, a weakening reconnection guide field is inferred, which may also contribute to the hardening of the nonthermal electrons during the post-impulsive phase.more » « less
-
Abstract Between 2017 and 2024, the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory has observed numerous white-light solar flares (WLFs). HMI spectropolarimetric observations of certain WLFs, in particular the X9.3 flare of 2017 September 6, reveal one or more locations within the umbra or along the umbra/penumbra boundary of the flaring active region where the FeI6173 Å line briefly goes into full emission, indicating significant heating of the photosphere and lower chromosphere. For five flares featuring FeI6173 Å line-core emission, we perform spectropolarimetric analysis using HMI 90 s cadence Stokes data. For all investigated flares, line-core emission is observed to last for a single 90 s frame and is either concurrent with or followed by an increase in the line continuum intensity lasting one to two frames (90–180 s). Additionally, permanent changes to the StokesQ,U, and/orVprofiles were observed, indicating long-lasting nontransient changes to the photospheric magnetic field. These emissions coincided with local maxima in hard X-ray emission observed by Konus-Wind, as well as local maxima in the time derivative of soft X-ray emission observed by GOES 16-18. Comparison of the FeI6173 Å line profile synthesis for the ad hoc heating of the initial empirical VAL-S umbra model and quiescent-Sun (VAL-C-like) model indicates that the FeI6173 Å line emission in the white-light flare kernels could be explained by the strong heating of initially cool photospheric regions.more » « less
-
Abstract We identify a set of ∼100 “cold” solar flares and perform a statistical analysis of them in the microwave range. Cold flares are characterized by a weak thermal response relative to nonthermal emission. This work is a follow-up of a previous statistical study of cold flares, which focused on hard X-ray emission to quantify the flare nonthermal component. Here, we focus on the microwave emission. The thermal response is evaluated by the soft X-ray emission measured by the GOES X-ray sensors. We obtain spectral parameters of the flare gyrosynchrotron emission and reveal patterns of their temporal evolution. The main results of the previous statistical study are confirmed: as compared to a “mean” flare, the cold flares have shorter durations, higher spectral peak frequencies, and harder spectral indices above the spectral peak. Nonetheless, there are some cold flares with moderate and low peak frequencies. In the majority of cold flares, we find evidence of the Razin effect in the microwave spectra, indicative of rather dense flaring loops. We discuss the results in the context of the electron acceleration efficiency.more » « less
An official website of the United States government

