null
                            (Ed.)
                        
                    
            
                            Developing accurate solar performance models, which infer solar power output in real time based on the current environmental conditions, are an important prerequisite for many advanced energy analytics. Recent work has developed sophisticated data-driven techniques that generate customized models for complex rooftop solar sites by combining well-known physical models with both system and public weather station data. However, inferring solar generation from public weather station data has two drawbacks: not all solar sites are near a public weather station, and public weather data generally quantifies cloud cover-the most significant weather metric that affects solar-using highly coarse and imprecise measurements.In this paper, we develop and evaluate solar performance models that use satellite-based estimates of downward shortwave (solar) radiation (DSR) at the Earth's surface, which NOAA began publicly releasing after the launch of the GOES-R geostationary satellites in 2017. Unlike public weather data, DSR estimates are available for every 0.5km 2 area. As we show, the accuracy of solar performance modeling using satellite data and public weather station data depends on the cloud conditions, with DSR-based modeling being more accurate under clear skies and station-based modeling being more accurate under overcast skies. Surprisingly, our results show that, overall, pure satellite-based modeling yields similar accuracy as pure station-based modeling, although the relationship is a function of conditions and the local climate. We also show that a hybrid approach that combines the best of both approaches can also modestly improve accuracy. 
                        more » 
                        « less   
                     An official website of the United States government
An official website of the United States government 
				
			 
					 
					
