skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Novel scaling laws to derive spatially resolved flare and CME parameters from sun-as-a-star observables
Coronal mass ejections (CMEs) are often associated with X-ray (SXR) flares powered by magnetic reconnection in the low corona, while the CME shocks in the upper corona and interplanetary (IP) space accelerate electrons often producing the type II radio bursts. The CME and the reconnection event are part of the same energy release process as highlighted by the correlation between reconnection flux (ϕrec) that quantifies the strength of the released magnetic free energy during the SXR flare, and the CME kinetic energy that drives the IP shocks leading to type II bursts. Unlike the Sun, these physical parameters cannot be directly inferred in stellar observations. Hence, scaling laws between unresolved sun-as-a-star observables, namely SXR luminosity (LX) and type II luminosity (LR), and the physical properties of the associated dynamical events are crucial. Such scaling laws also provide insights into the interconnections between the particle acceleration processes across low-corona to IP space during solar-stellar “flare-CME-type II” events. Using long-term solar data in the SXR to radio waveband, we derived a scaling law between two novel power metrics for the flare and CME-associated processes. The metrics of “flare power” (Pflare = √(LXϕrec)) and “CME power” (PCME = √(LRVCME2)), whereVCMEis the CME speed, scale asPflare ∝ PCME0.76 ± 0.04. In addition,LXandϕrecshow power-law trends withPCMEwith indices of 1.12 ± 0.05 and 0.61 ± 0.05, respectively. These power laws help infer the spatially resolved physical parameters,VCMEandϕrec, from disk-averaged observables,LXandLRduring solar-stellar flare-CME-type II events.  more » « less
Award ID(s):
2043131
PAR ID:
10620875
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
EDP Science
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
691
ISSN:
0004-6361
Page Range / eLocation ID:
L8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context.The 2003 October 28 (X17.2) eruptive flare was a unique event. The coronal electric field and theπ-decayγ-ray emission flux displayed the highest values ever inferred for solar flares. Aims.Our aim is to reveal physical links between the magnetic reconnection process, energy release, and acceleration of electrons and ions to high energies in the chain of the magnetic energy transformations in the impulsive phase of the solar flare. Methods.The global reconnection rate,φ̇(t), and the local reconnection rate (coronal electric field strength),Ec(r, t), were calculated from flare ribbon separation in Hαfiltergrams and photospheric magnetic field maps. Then, HXRs measured by CORONAS-F/SPR-N and the derivative of the GOES SXR flux,İSXR(t) were used as proxies of the flare energy release evolution. The flare early rise phase, main raise phase, and main energy release phase were defined based on temporal profiles of the above proxies. The available results of INTEGRAL and CORONAS-F/SONG observations were combined with Konus-Wind data to quantify the time behavior of electron and proton acceleration. Promptγ-ray lines and delayed 2.2 MeV line temporal profiles observed with Konus-Wind and INTEGRAL/SPI were used to detect and quantify the nuclei with energies of 10−70 MeV. Results.The magnetic-reconnection rates,φ̇(t) andEc(r, t), follow a common evolutionary pattern with the proxies of the flare energy released into high-energy electrons. The global and local reconnection rates reach their peaks at the end of the main rise phase of the flare. The spectral analysis of the high-energyγ-ray emission revealed a close association between the acceleration process efficiency and the reconnection rates. High-energy bremsstrahlung continuum and narrowγ-ray lines were observed in the main rise phase whenEc(r, t) of the positive (negative) polarity reached values of ∼120 V cm−1(∼80 V cm−1). In the main energy release phase, the upper energy of the bremsstrahlung spectrum was significantly reduced and the pion-decayγ-ray emission appeared abruptly. We discuss the reasons why the change of the acceleration regime occurred along with the large-scale magnetic field restructuration of this flare. Conclusions.The similarities between the proxies of the flare energy release withφ̇(t) andEc(r, t) in the flare’s main rise phase are in accordance with the reconnection models. We argue that the main energy release and proton acceleration up to subrelativistic energies began just when the reconnection rate was going through the maximum, that is, following a major change of the flare topology. 
    more » « less
  2. Abstract We investigate the impact of turbulence on magnetic reconnection through high-resolution 3D magnetohydrodynamic (MHD) simulations, spanning Lundquist numbers fromS= 103to 106. Building on the A. Lazarian & E. T. Vishniac theory, which asserts reconnection rate independence from ohmic resistivity, we introduce small-scale perturbations untilt= 0.1tA. Even after the perturbations cease, turbulence persists, resulting in sustained high reconnection rates ofVrec/VA∼ 0.03–0.08. These rates exceed those generated by resistive tearing modes (plasmoid chain) in 2D and 3D MHD simulations by factors of 5–6. Our findings match observations in solar phenomena and previous 3D MHD global simulations of solar flares, accretion flows, and relativistic jets. The simulations show a steady-state fast reconnection rate compatible with the full development of turbulence in the system, demonstrating the robustness of the process in turbulent environments. We confirm reconnection rate independence from the Lundquist number, supporting Lazarian and Vishniac’s theory of fast turbulent reconnection. Additionally, we find a mild dependence ofVrecon the plasma–βparameter, decreasing from 0.036 to 0.028 (in Alfvén units) asβincreases from 2.0 to 64.0 for simulations with a Lundquist number of 105. Lastly, we explore the magnetic Prandtl number’s (Prm=ν/η) influence on the reconnection rate and find it negligible during the turbulent regime across the range tested, from Prm= 1 to 60. 
    more » « less
  3. Abstract We present light curves and flares from a 7 day, multiwavelength observational campaign of AU Mic, a young and active dM1e star with exoplanets and a debris disk. We report on 73 unique flares between the X-ray to optical data. We use high-time-resolution near-UV (NUV) photometry and soft X-ray (SXR) data from the X-ray Multi-Mirror Mission to study the empirical Neupert effect, which correlates the gradual and impulsive phase flaring emissions. We find that 65% (30 of 46) flares do not follow the Neupert effect, which is 3 times more excursions than seen in solar flares, and propose a four-part Neupert effect classification (Neupert, quasi-Neupert, non-Neupert types I and II) to explain the multiwavelength responses. While the SXR emission generally lags behind the NUV as expected from the chromospheric evaporation flare models, the Neupert effect is more prevalent in larger, more impulsive flares. Preliminary flaring rate analysis with X-ray andU-band data suggests that previously estimated energy ratios hold for a collection of flares observed over the same time period, but not necessarily for an individual, multiwavelength flare. These results imply that one model cannot explain all stellar flares and care should be taken when extrapolating between wavelength regimes. Future work will expand wavelength coverage using radio data to constrain the nonthermal empirical and theoretical Neupert effects to better refine models and bridge the gap between stellar and solar flare physics. 
    more » « less
  4. Abstract We survey 20 reconnection outflow events observed by Magnetospheric MultiScale in the low-βand high-Alfvén-speed regime of the Earth’s magnetotail to investigate the scaling of ion bulk heating produced by reconnection. The range of inflow Alfvén speeds (800–4000 km s−1) and inflow ionβ(0.002–1) covered by this study is in a plasma regime that could be applicable to the solar corona and flare environments. We find that the observed ion heating increases with increasing inflow (upstream) Alfvén speed,VA, based on the reconnecting magnetic field and the upstream plasma density. However, ion heating does not increase linearly as a function of available magnetic energy per particle, m i V A 2 . Instead, the heating increases progressively less as m i V A 2 rises. This is in contrast to a previous study using the same data set, which found that electron heating in this high-Alfvén-speed and low-βregime scales linearly with m i V A 2 , with a scaling factor nearly identical to that found for the low-VAand high-βmagnetopause. Consequently, the ion-to-electron heating ratio in reconnection exhausts decreases with increasing upstreamVA, suggesting that the energy partition between ions and electrons in reconnection exhausts could be a function of the available magnetic energy per particle. Finally, we find that the observed difference in ion and electron heating scaling may be consistent with the predicted effects of a trapping potential in the exhaust, which enhances electron heating, but reduces ion heating. 
    more » « less
  5. Abstract There is a considerable body of work that describes the scaling of diblock copolymer micelle dimensions in dilute and semi‐dilute solution based upon block degrees of polymerization and copolymer concentration. However, there is a lack of analogous information for semi‐dilute ABA triblock copolymer gels, which consist of ABA triblock copolymer dissolved in midblock‐selective (B‐selective) solvent. The present study uses small angle X‐ray scattering to extract micelle dimensions for numerous triblock copolymer gels that vary in copolymer identity (and hence block lengths) and copolymer concentration, as well as gels that contain various ratios of two unique triblock copolymers. Analysis of micelle structural data subsequently translates to universal scaling expressions for the micelle core radius –rA≈NA0.53NB−0.14ϕABA0.16whereNAandNBare the endblock and midblock degrees of polymerization, respectively, andϕABAis the volume fraction of triblock copolymer in the gel – and for the intermicelle spacing –lAA≈NA0.09NB0.29ϕABA−0.35. Each scaling expression describes the full collection of experimental data very well. Additionally, these scaling expressions are partially in line with expectations from semi‐dilute diblock copolymer solution theory. 
    more » « less