We introduce generalized Demazure operators for the equivariant oriented cohomology of the flag variety, which have specializations to various Demazure operators and Demazure–Lusztig operators in both equivariant cohomology and equivariant K-theory. In the context of the geometric basis of the equivariant oriented cohomology given by certain Bott–Samelson classes, we use these operators to obtain formulas for the structure constants arising in different bases. Specializing to divided difference operators and Demazure operators in singular cohomology and K-theory, we recover the formulas for structure constants of Schubert classes obtained in Goldin and Knutson (Pure Appl Math Q 17(4):1345–1385, 2021). Two specific specializations result in formulas for the the structure constants for cohomological and K-theoretic stable bases as well; as a corollary we reproduce a formula for the structure constants of the Segre–Schwartz–MacPherson basis previously obtained by Su (Math Zeitschrift 298:193–213, 2021). Our methods involve the study of the formal affine Demazure algebra, providing a purely algebraic proof of these results.
more »
« less
This content will become publicly available on January 1, 2026
Hook formulae from Segre–MacPherson classes
Nakada’s colored hook formula is a vast generalization of many important formulae in combinatorics, such as the classical hook length formula and the Peterson’s formula for the number of reduced expressions of minuscule Weyl group elements. In this paper, we use cohomological properties of Segre–MacPherson classes of Schubert cells and varieties to prove a generalization of a cohomological version of Nakada’s formula, in terms of smoothness properties of Schubert varieties. A key ingredient in the proof is the study of a decorated version of the Bruhat graph. Weights of the paths in this graph give the terms in the generalized Nakada’s formula, and the summation over all paths is equal to the equivariant multiplicity of the Chern–Schwartz–MacPherson class of a Richardson variety. Among the applications we mention an algorithm to calculate structure constants of multiplications of Segre–MacPherson classes of Schubert cells, and a skew version of Nakada–Peterson’s formula.
more »
« less
- Award ID(s):
- 2152294
- PAR ID:
- 10621064
- Publisher / Repository:
- Comb. Consort. (TCC)
- Date Published:
- Journal Name:
- Algebraic Combinatorics
- Volume:
- 8
- Issue:
- 3
- ISSN:
- 2589-5486
- Page Range / eLocation ID:
- 655 to 685
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Matrix Schubert varieties are affine varieties arising in the Schubert calculus of the complete flag variety. We give a formula for the Castelnuovo–Mumford regularity of matrix Schubert varieties, answering a question of Jenna Rajchgot. We follow her proposed strategy of studying the highest-degree homogeneous parts of Grothendieck polynomials, which we call Castelnuovo–Mumford polynomials. In addition to the regularity formula, we obtain formulas for the degrees of all Castelnuovo–Mumford polynomials and for their leading terms, as well as a complete description of when two Castelnuovo–Mumford polynomials agree up to scalar multiple. The degree of the Grothendieck polynomial is a new permutation statistic which we call the Rajchgot index; we develop the properties of Rajchgot index and relate it to major index and to weak order.more » « less
-
Abstract We use the geometry of the stellahedral toric variety to study matroids. We identify the valuative group of matroids with the cohomology ring of the stellahedral toric variety and show that valuative, homological and numerical equivalence relations for matroids coincide. We establish a new log-concavity result for the Tutte polynomial of a matroid, answering a question of Wagner and Shapiro–Smirnov–Vaintrob on Postnikov–Shapiro algebras, and calculate the Chern–Schwartz–MacPherson classes of matroid Schubert cells. The central construction is the ‘augmented tautological classes of matroids’, modeled after certain toric vector bundles on the stellahedral toric variety.more » « less
-
null (Ed.)Abstract We investigate the long-standing problem of finding a combinatorial rule for the Schubert structure constants in the $$K$$-theory of flag varieties (in type $$A$$). The Grothendieck polynomials of A. Lascoux–M.-P. Schützenberger (1982) serve as polynomial representatives for $$K$$-theoretic Schubert classes; however no positive rule for their multiplication is known in general. We contribute a new basis for polynomials (in $$n$$ variables) which we call glide polynomials, and give a positive combinatorial formula for the expansion of a Grothendieck polynomial in this basis. We then provide a positive combinatorial Littlewood–Richardson rule for expanding a product of Grothendieck polynomials in the glide basis. Our techniques easily extend to the $$\beta$$-Grothendieck polynomials of S. Fomin–A. Kirillov (1994), representing classes in connective $$K$$-theory, and we state our results in this more general context.more » « less
-
We give an explicit formula for the degree of the Grothendieck polynomial of a Grassmannian permutation and a closely related formula for the Castelnuovo-Mumford regularity of the Schubert determinantal ideal of a Grassmannian permutation. We then provide a counterexample to a conjecture of Kummini-Lakshmibai-Sastry-Seshadri on a formula for regularities of standard open patches of particular Grassmannian Schubert varieties and show that our work gives rise to an alternate explicit formula in these cases. We end with a new conjecture on the regularities of standard open patches ofarbitraryGrassmannian Schubert varieties.more » « less
An official website of the United States government
