We present a first study of the effects of renormalization-group resummation (RGR) and leading-renormalon resummation (LRR) on the systematic errors of the unpolarized isovector nucleon generalized parton distribution in the framework of large-momentum effective theory. This work is done using lattice gauge ensembles generated by the MILC Collaboration, consisting of flavors of highly improved staggered quarks with a physical pion mass at lattice spacing and a box width . We present results for the nucleon and generalized parton distributions (GPDs) with average boost momentum at momentum transfers at skewness as well as at , renormalized in the modified minimal subtraction ( ) scheme at scale , with two- and one-loop matching, respectively. We demonstrate that the simultaneous application of RGR and LRR significantly reduces the systematic errors in renormalized matrix elements and distributions for both the zero and nonzero skewness GPDs, and that it is necessary to include both RGR and LRR at higher orders in the matching and renormalization processes. Published by the American Physical Society2024
more »
« less
Generalized parton distributions from the pseudodistribution approach on the lattice
Generalized parton distributions (GPDs) are key quantities for the description of a hadron’s three-dimensional structure. They are the current focus of all areas of hadronic physics—phenomenological, experimental and theoretical, including lattice QCD. Synergies between these areas are desirable and essential to achieve precise quantification and understanding of the structure of, particularly, nucleons, as the basic ingredients of matter. In this paper, we investigate, for the first time, the numerical implementation of the pseudodistribution approach for the extraction of zero-skewness GPDs for unpolarized quarks. Pseudodistributions are Euclidean parton correlators computable in lattice QCD that can be perturbatively matched to the light-cone parton distributions of interest. Although they are closely related to the quasidistributions and come from the same lattice-extracted matrix elements, they are, however, subject to different systematic effects. We use the data previously utilized for quasi-GPDs and extend it with other momentum transfers and nucleon boosts, in particular a higher one ( ) with eightfold larger statistics than the largest one used for quasidistributions ( ). We renormalize the matrix elements with a ratio scheme and match the resulting Ioffe time distributions to the light cone in coordinate space. The matched distributions are then used to reconstruct the dependence with a fitting . We investigate some systematic effects related to this procedure, and we also compare the results with the ones obtained in the framework of quasi-GPDs. Our final results involve the invariant four-momentum transfer squared ( ) dependence of the flavor nonsinglet ( ) and GPDs. Published by the American Physical Society2024
more »
« less
- Award ID(s):
- 2412792
- PAR ID:
- 10621077
- Publisher / Repository:
- APS
- Date Published:
- Journal Name:
- Physical Review D
- Volume:
- 110
- Issue:
- 5
- ISSN:
- 2470-0010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report the first lattice QCD computation of pion and kaon electromagnetic form factors, , at large momentum transfer up to 10 and , respectively. Utilizing physical masses and two fine lattices, we achieve good agreement with JLab experimental results at . For , our results provide QCD benchmarks for the forthcoming experiments at JLab 12 GeV and future electron-ion colliders. We also test the QCD collinear factorization framework utilizing our high- form factors at next-to-next-to-leading order in perturbation theory, which relates the form factors to the leading Fock-state meson distribution amplitudes. Comparisons with independent lattice QCD calculations using the same framework demonstrate, within estimated uncertainties, the universality of these nonperturbative quantities. Published by the American Physical Society2024more » « less
-
We present the first calculation of the pion gluon moment from lattice QCD in the continuum-physical limit. The calculation is done using clover fermions for the valence action with three pion masses, 220, 310 and 690 MeV, and three lattice spacings, 0.09, 0.12, and 0.15 fm, using ensembles generated by MILC Collaboration with flavors of highly improved staggered quarks (HISQ). On the lattice, we nonperturbatively renormalize the gluon operator in RI/MOM scheme using the cluster-decomposition error reduction (CDER) technique to enhance the signal-to-noise ratio of the renormalization constant. We extrapolate the pion gluon moment to the continuum-physical limit and obtain in the scheme at 2 GeV, with first error being the statistical error and uncertainties in nonperturbative renormalization, and the second being a systematic uncertainty estimating the effect of ignoring quark mixing. Our pion gluon momentum fraction has a central value lower than two recent single-ensemble lattice-QCD results near physical pion mass but is consistent with the recent global fits by JAM and xFitter and with most QCD-model estimates. Published by the American Physical Society2024more » « less
-
The ALICE Collaboration reports the measurement of semi-inclusive distributions of charged-particle jets recoiling from a high transverse momentum (high ) hadron trigger in proton-proton and central Pb-Pb collisions at . A data-driven statistical method is used to mitigate the large uncorrelated background in central Pb-Pb collisions. Recoil jet distributions are reported for jet resolution parameter , 0.4, and 0.5 in the range and trigger-recoil jet azimuthal separation . The measurements exhibit a marked medium-induced jet yield enhancement at low and at large azimuthal deviation from . The enhancement is characterized by its dependence on , which has a slope that differs from zero by . Comparisons to model calculations incorporating different formulations of jet quenching are reported. These comparisons indicate that the observed yield enhancement arises from the response of the QGP medium to jet propagation. © 2024 CERN, for the ALICE Collaboration2024CERNmore » « less
-
This paper reports the first measurement of the transverse momentum ( ) spectra of primary charged pions, kaons, (anti)protons, and unidentified particles as a function of the charged-particle flattenicity in pp collisions at . Flattenicity is a novel event shape observable that is measured in the pseudorapidity intervals covered by the V0 detector, and . According to QCD-inspired phenomenological models, it shows sensitivity to multiparton interactions and is less affected by biases toward larger due to local multiplicity fluctuations in the V0 acceptance than multiplicity. The analysis is performed in minimum-bias (MB) as well as in high-multiplicity events up to . The event selection requires at least one charged particle produced in the pseudorapidity interval . The measured distributions, average , kaon-to-pion and proton-to-pion particle ratios, presented in this paper, are compared to model calculations using 8 based on color strings and EPOS LHC. The modification of the -spectral shapes in low-flattenicity events that have large event activity with respect to those measured in MB events develops a pronounced peak at intermediate ( ), and approaches the vicinity of unity at higher . The results are qualitatively described by , and they show different behavior than those measured as a function of charged-particle multiplicity based on the V0M estimator. © 2025 CERN, for the ALICE Collaboration2025CERNmore » « less
An official website of the United States government

