null
(Ed.)
Manganese doped inorganic halide perovskites continue to be of current interest for applications in light emitting devices and down-converters in solar cells. In this work we prepared Mn doped CsPbCl3 (Mn: CPC) bulk crystals and nanoparticles (NPs) and compared their emission properties. Bulk crystals were grown from the melt by vertical Bridgman technique and NPs were synthesized using a microwave assisted method. Under ultraviolet excitation at 350 nm, bulk crystal and NPs exhibited a broad orange emission centered in the ~600 nm range at room temperature. The broadbandemission was assigned to the intra-3d transition 4T1 → 6A1 of Mn2+ ions incorporated in the CPC host lattice. The Mn2+emission lifetimes were nearly exponential with values of 1.1 ms for NPs and 0.7 ms for the bulk crystal. NPs also showed exciton emission peaking at ~402 nm, whereas the bulk crystal exhibited no emission near the band-edge. Instead, the bulk material revealed a weak below-gap emission in the 450-550 nm region suggesting the existence of defect states. The excitation spectra for the orange Mn2+ emission from NPs and bulk crystals of Mn: CPC were significantly different indicating distinct excitation pathways. The excitation spectrum of the orange Mn2+ emission from NPs showed excitonic structure similar to the absorption spectrum suggesting an efficient energy transfer from excitons to Mn2+ ions. In contrast, UV excitation was less efficient for the bulk crystal and the excitation was dominated by below-gap excitation bands centered at 427 and 500 nm.
more »
« less
An official website of the United States government

