skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Can Large-Language Models Help us Better Understand and Teach the Development of Energy-Efficient Software?
Computing systems are consuming an increasing and unsustainable fraction of society’s energy footprint, notably in data centers. Meanwhile, energy-efficient software engineering techniques are often absent from undergraduate curricula. We propose to develop a learning module for energy-efficient software, suitable for incorporation into an undergraduate software engineering class. There is one major problem with such an endeavor: undergraduate curricula have limited space for mastering energy-related systems programming aspects. To address this problem, we propose to leverage the domain expertise afforded by large language models (LLMs). In our preliminary studies, we observe that LLMs can generate energy-efficient variations of basic linear algebra codes tailored to both ARM64 and AMD64 architectures, as well as unit tests and energy measurement harnesses. On toy examples suitable for classroom use, this approach reduces energy expenditure by 30–90%. These initial experiences give rise to our vision of LLM-based metacompilers as a tool for students to transform high-level algorithms into efficient, hardware-specific implementations. Complementing this tooling, we will incorporate systems thinking concepts into the learning module so that students can reason both locally and globally about the effects of energy optimizations.  more » « less
Award ID(s):
2343596
PAR ID:
10621251
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
arXiv
Date Published:
Subject(s) / Keyword(s):
Large language models Energy efficiency Computing education
Format(s):
Medium: X
Institution:
PURDUE UNIVERSITY; Loyola University Chicago
Sponsoring Org:
National Science Foundation
More Like this
  1. The omnipresence of software systems across all aspects of society has necessitated that future technology professionals are aware of ethical concerns raised by the design and development of software and are trained to minimize harm by undertaking responsible engineering. This need has become even more urgent with artificial intelligence (AI) driven software deployment. In this paper we present a study of an interactive pedagogical intervention – role-play case studies – designed to teach undergraduate technology students about ethics with a focus on software systems. Drawing on the situated learning perspective from the Learning Sciences, we created case studies, associated stakeholder roles, discussion scripts, and pre and post discussion assignments to guide students’ learning. Open-ended data was collected from thirty-nine students and analyzed qualitatively. Findings from the study show that by taking on different perspectives on a problem, students were able to identify a range of ethical issues and understand the role of the software system process holistically, taking context, complexity, and trade-offs into account. In their discussion and reflections, students deliberated the role of software in society and the role of humans in automation. The curricula, including case studies, are publicly available for implementation. 
    more » « less
  2. Abstract Communicating and interpreting uncertainty in ecological model predictions is notoriously challenging, motivating the need for new educational tools, which introduce ecology students to core concepts in uncertainty communication. Ecological forecasting, an emerging approach to estimate future states of ecological systems with uncertainty, provides a relevant and engaging framework for introducing uncertainty communication to undergraduate students, as forecasts can be used as decision support tools for addressing real‐world ecological problems and are inherently uncertain. To provide critical training on uncertainty communication and introduce undergraduate students to the use of ecological forecasts for guiding decision‐making, we developed a hands‐on teaching module within the Macrosystems Environmental Data‐Driven Inquiry and Exploration (EDDIE;MacrosystemsEDDIE.org) educational program. Our module used an active learning approach by embedding forecasting activities in an R Shiny application to engage ecology students in introductory data science, ecological modeling, and forecasting concepts without needing advanced computational or programming skills. Pre‐ and post‐module assessment data from more than 250 undergraduate students enrolled in ecology, freshwater ecology, and zoology courses indicate that the module significantly increased students' ability to interpret forecast visualizations with uncertainty, identify different ways to communicate forecast uncertainty for diverse users, and correctly define ecological forecasting terms. Specifically, students were more likely to describe visual, numeric, and probabilistic methods of uncertainty communication following module completion. Students were also able to identify more benefits of ecological forecasting following module completion, with the key benefits of using forecasts for prediction and decision‐making most commonly described. These results show promise for introducing ecological model uncertainty, data visualizations, and forecasting into undergraduate ecology curricula via software‐based learning, which can increase students' ability to engage and understand complex ecological concepts. 
    more » « less
  3. This article describes the design, development, and evaluation of an undergraduate learning module that builds students’ skills on how data analysis and numerical modeling can be used to analyze and design water resources engineering projects. The module follows a project-based approach by using a hydrologic restoration project in a coastal basin in south Louisiana, USA. The module has two main phases, a feasibility analysis phase and a hydraulic design phase, and follows an active learning approach where students perform a set of quantitative learning activities that involve extensive data and modeling analyses. The module is designed using open resources, including online datasets, hydraulic simulation models and geographical information system software that are typically used by the engineering industry and research communities. Upon completing the module, students develop skills that involve model formulation, parameter calibration, sensitivity analysis, and the use of data and models to assess and design a hydrologic a proposed hydrologic engineering project. Guided by design-based research framework, the implementation and evaluation of the module focused primarily on assessing students’ perceptions of the module usability and its design attributes, their perceived contribution of the module to their learning, and their overall receptiveness of the module and how it impacts their interest in the subject and future careers. Following an improvement-focused evaluation approach, design attributes that were found most critical to students included the use of user-support resources and self-checking mechanisms. These aspects were identified as key features that facilitate students’ self-learning and independent completion of tasks, while still enriching their learning experiences when using data and modeling-rich applications. Evaluation data showed that the following attributes contributed the most to students’ learning and potential value for future careers: application of modern engineering data analysis; use of real-world hydrologic datasets; and appreciation of uncertainties and challenges imposed by data scarcity. The evaluation results were used to formulate a set of guiding principles on how to design effective and conducive undergraduate learning experiences that adopt technology-enhanced and data and modeling- based strategies, on how to enhance users’ experiences with free and open-source engineering analysis tools, and on how to strike a pedagogical balance between module complexity, student engagement, and flexibility to fit within existing curricula limitations. 
    more » « less
  4. In today’s fast-paced software development environments, DevOps has revolutionized the way teams build, test, and deploy applications by emphasizing automation, collaboration, and continuous integration/continuous delivery (CI/CD). However, with these advancements comes an increased need to address security proactively, giving rise to the DevSecOps movement, which integrates security practices into every phase of the software development lifecycle. DevOps security remains underrepresented in academic curricula despite its growing importance in the industry. To address this gap, this paper presents a handson learning module that combines Chaos Engineering and Whitebox Fuzzing to teach core principles of secure DevOps practices in an authentic, scenario-driven environment. Chaos Engineering allows students to intentionally disrupt systems to observe and understand their resilience, while White-box Fuzzing enables systematic exploration of internal code paths to discover cornercase vulnerabilities that typical tests might miss. The module was deployed across three academic institutions, and both pre- and post-surveys were conducted to evaluate its impact. Pre-survey data revealed that while most students had prior experience in software engineering and cybersecurity, the majority lacked exposure to DevOps security concepts. Post-survey responses gathered through ten structured questions showed highly positive feedback 66.7% of students strongly agreed, and 22.2% agreed that the hands-on labs improved their understanding of secure DevOps practices. Participants also reported increased confidence in secure coding, vulnerability detection, and resilient infrastructure design. These findings support the integration of experiential learning techniques like chaos simulations and white-box fuzzing into security education. By aligning academic training with realworld industry needs, this module effectively prepares students for the complex challenges of modern software development and operations. 
    more » « less
  5. We propose an experimental ethics-based curricular module for an undergraduate course on Robot Ethics. The proposed module aims to teach students how human subjects research methods can be used to investigate potential ethical concerns arising in human-robot interaction, by engaging those students in real experimental ethics research. In this paper we describe the proposed curricular module, describe our implementation of that module within a Robot Ethics course offered at a medium-sized engineering university, and statistically evaluate the effectiveness of the proposed curricular module in achieving desired learning objectives. While our results do not provide clear evidence of a quantifiable benefit to undergraduate achievement of the described learning objectives, we note that the module did provide additional learning opportunities for graduate students in the course, as they helped to supervise, analyze, and write up the results of this undergraduate-performed research experiment. 
    more » « less