skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Experimental Ethics Approach to Robot Ethics Education
We propose an experimental ethics-based curricular module for an undergraduate course on Robot Ethics. The proposed module aims to teach students how human subjects research methods can be used to investigate potential ethical concerns arising in human-robot interaction, by engaging those students in real experimental ethics research. In this paper we describe the proposed curricular module, describe our implementation of that module within a Robot Ethics course offered at a medium-sized engineering university, and statistically evaluate the effectiveness of the proposed curricular module in achieving desired learning objectives. While our results do not provide clear evidence of a quantifiable benefit to undergraduate achievement of the described learning objectives, we note that the module did provide additional learning opportunities for graduate students in the course, as they helped to supervise, analyze, and write up the results of this undergraduate-performed research experiment.  more » « less
Award ID(s):
1849348
PAR ID:
10125972
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
ISSN:
2159-5399
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There is a lack of access to critical knowledge on machine ethics and the impacts of technology on individuals and communities in everyday life. This project pioneers an inclusive curriculum design process to broaden accessibility to machine ethics education. Our approach uses a ''source'' course to develop materials for seven "target" courses. The source course is a machine ethics curriculum development course in which students and faculty collaboratively build curricular materials for integration into non-computer science courses. Here we describe the development of the ''source'' course using a curriculum co-creation process that leverages student and faculty expertise. The process emphasizes an inclusive design approach, rooted in continuous stakeholder feedback and consistent, transparent communication. The products of this process include course materials that incorporate underrepresented ethical frameworks. Additionally, it features peer-reviewed journal assignments that promote reflective learning and sharing of diverse perspectives, as well as a final module project in which students collaborate with faculty to co-create curricular materials. Our approach aims to broaden a culturally relevant understanding of ethical challenges in technology while ensuring that the curriculum resonates with diverse student backgrounds. Our presentation will describe key insights about the process and products of our curriculum design. 
    more » « less
  2. As artificial intelligence and robotics are increasingly integrated in graduate research and education, graduate students across disciplines need to develop a “technological literacy” in how they work along with the ethical understanding needed to navigate these technologies responsibly. To satisfy this need, the corresponding and last author has developed a graduate-level course on AI ethics and human-robot interaction (HRI) designed for students from a variety of disciplines and backgrounds. The paper offers an overview of the course, detailing its content, institutional context, and the rationale behind its development. It describes the curriculum structure, including key themes and learning objectives, and the pedagogical approaches and assessment methods utilized in the course. The paper concludes with reflections from the instructor on the lessons learned from teaching the course and the experiences gained throughout the learning process. 
    more » « less
  3. null (Ed.)
    While formal coursework remains one of the most common strategies for developing ethics knowledge and competence among engineering students, ethical situations also surface in many other settings. In our own research on engineering student perceptions of ethics and social responsibility, we found that many engineering interns and co-ops reported encountering ethical issues or dilemmas in the workplace. To further illuminate such encounters, this paper aims to: 1) identify and describe real-world ethical issues encountered by engineering students in workplace settings, and 2) investigate what students learned from these experiences. We address these objectives by reporting select results from an ongoing qualitative analysis of 33 interviews with undergraduate students in their fourth year of college. We more specifically present a series of illustrative cases drawn from four of the interviews, selected because the participants described specific work situations in considerable detail and the cases represent a wide variety of ethical concerns. The purpose for sharing these cases is threefold. First, we note some specific lessons that our subjects learned (or failed to learn) through the selected cases. Second, we argue that the workplace is a particularly rich setting for learning about professional ethics. Third, we make recommendations for better scaffolding and supporting student learning in workplace settings. We expect this paper will be of particular interest to engineering ethics scholars studying where and how students learn about ethics, instructors looking for ways to enhance and extend ethics learning, and students preparing for internship, co-op, and/or full-time job roles. 
    more » « less
  4. Ethics education and societal understandings are critical to an education in engineering. However, researchers have found that students do not always see ethics as a part of engineering. In this paper, we present a sociotechnical approach to teaching ethics around the topic of surveillance technology in an interdisciplinary, co-designed and co-taught course. We describe and reflect on our curricular and pedagogical approach that uplifts cross-disciplinary dialogue, social theoretical frameworks to guide ethical thinking, and highlighting collective action and resistance in our course content and praxis to inspire students. Through a reflexive thematic analysis of student reflection writing, we examine the ways students relate society and technology, generate ethical skills and questions, and are motivated to act. We find that, in fact, this approach resonates with student experience and desire for discipline-specific ethical analysis, and is highly motivating. 
    more » « less
  5. null (Ed.)
    Amidst growing concerns about a lack of attention to ethics in engineering education and professional practice, a variety of formal course-based interventions and informal or extracurricular programs have been created to improve the social and ethical commitments of engineering graduates. To supplement the formal and informal ethics education received as undergraduate students, engineering professionals often also participate in workplace training and professional development activities on ethics, compliance, and related topics. Despite this preparation, there is growing evidence to suggest that technical professionals are often challenged to navigate ethical situations and dilemmas. Some prior research has focused on assessing the impacts of a variety of learning experiences on students’ understandings of ethics and social responsibility, including the PIs’ prior NSF-funded CCE STEM study which followed engineering students through the four years of their undergraduate studies using both quantitative and qualitative research methods. This prior project explored how the students’ views on these topics changed across demographic groups, over time, between institutions, and due to specific interventions. Yet, there has been little longitudinal research on how these views and perceptions change (or do not change) among engineers during the school-to-work transition. Furthermore, there has been little exploration of how these views are influenced by the professional contexts in which these engineers work, including cultures and norms prevalent in different technical fields, organizations, and industry sectors. This NSF-supported Ethical and Responsible Research (ER2) study responds to these gaps in the literature by asking: RQ1) How do perceptions of ethics and social responsibility change in the transition from undergraduate engineering degree programs to the workplace (or graduate studies), and how are these perceptions shaped or influenced?, and RQ2) How do perceptions of ethics and social responsibility vary depending on a given individual’s engineering discipline/background and current professional setting? This paper gives an overview of the research project, describing in particular the longitudinal, mixed-methods study design which will involve collecting and analyzing data from a large sample of early career engineers. More specifically, we will present the proposed study contexts, timeline, target subject populations, and procedures for quantitative and qualitative data collection and analysis. We will also describe how this study leverages our prior project, thereby allowing unique longitudinal comparisons that span participants’ years as an engineering undergraduate student to their time as an early-career professional. Through this project, we aim to better understand how early career engineers’ perceptions of social and ethical responsibility are shaped by their prior experiences and current professional contexts. This paper will likely be of particular interest to scholars who teach or research engineering ethics, social responsibility, and professional practice. 
    more » « less