- Award ID(s):
- 1845430
- PAR ID:
- 10400607
- Editor(s):
- Bernhardt, Boris C
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 17
- Issue:
- 2
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0264537
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The modeling of the brain as a three-dimensional spatial object, similar to a geographical landscape, has the paved way for the successful application of Kriging methods in solving the seizure detection problem with good performance but in cubic computational time complexity. The Deep Neural Network (DNN) has been widely used for seizure detection due to its effectiveness in classification tasks, although at the cost of a protracted training time. While Kriging exploits the spatial correlation between data locations, DNN relies on its capacity to learn intrinsic representations within the dataset from the basest unit parts. This paper presents a Distributed Kriging-Bootstrapped Deep Neural Network (DNN) model as a twofold solution for fast and accurate seizure detection using brain signals collected with the electroencephalogram (EEG) from healthy subjects and patients of epilepsy. The proposed model parallelizes the Kriging computation into different cores in a machine and then produces a strongly correlated, unified quasi-output data which serves as an input to the Deep Neural Network. Experimental results validate the proposed model as superior to conventional Kriging methods and DNN by training in 91% less time than the basic DNN and about three times as fast as the ordinary Kriging-Bootstrapped Deep Neural Network (DNN) model while maintaining good performance in terms of sensitivity, specificity and testing accuracy compared to other models and existing works.more » « less
-
Abstract Patients with drug-resistant temporal lobe epilepsy often undergo intracranial EEG recording to capture multiple seizures in order to lateralize the seizure onset zone. This process is associated with morbidity and often ends in postoperative seizure recurrence. Abundant interictal (between-seizure) data are captured during this process, but these data currently play a small role in surgical planning. Our objective was to predict the laterality of the seizure onset zone using interictal intracranial EEG data in patients with temporal lobe epilepsy. We performed a retrospective cohort study (single-centre study for model development; two-centre study for model validation). We studied patients with temporal lobe epilepsy undergoing intracranial EEG at the University of Pennsylvania (internal cohort) and the Medical University of South Carolina (external cohort) between 2015 and 2022. We developed a logistic regression model to predict seizure onset zone laterality using several interictal EEG features derived from recent publications. We compared the concordance between the model-predicted seizure onset zone laterality and the side of surgery between patients with good and poor surgical outcomes. Forty-seven patients (30 female; ages 20–69; 20 left-sided, 10 right-sided and 17 bilateral seizure onsets) were analysed for model development and internal validation. Nineteen patients (10 female; ages 23–73; 5 left-sided, 10 right-sided, 4 bilateral) were analysed for external validation. The internal cohort cross-validated area under the curve for a model trained using spike rates was 0.83 for a model predicting left-sided seizure onset and 0.68 for a model predicting right-sided seizure onset. Balanced accuracies in the external cohort were 79.3% and 78.9% for the left- and right-sided predictions, respectively. The predicted concordance between the laterality of the seizure onset zone and the side of surgery was higher in patients with good surgical outcome. We replicated the finding that right temporal lobe epilepsy was harder to distinguish in a separate modality of resting-state functional MRI. In conclusion, interictal EEG signatures are distinct across seizure onset zone lateralities. Left-sided seizure onsets are easier to distinguish than right-sided onsets. A model trained on spike rates accurately identifies patients with left-sided seizure onset zones and predicts surgical outcome. A potential clinical application of these findings could be to either support or oppose a hypothesis of unilateral temporal lobe epilepsy when deciding to pursue surgical resection or ablation as opposed to device implantation.
-
Neural oscillations in the form of electroencephalogram (EEG) can reveal underlying brain functions, such as cognition, memory, perception, and consciousness. A comprehensive EEG computational model provides not only a stochastic procedure that directly generates data but also insights to further understand the neurological mechanisms. Here, we propose a generative and inference approach that combines the complementary benefits of probabilistic graphical models and generative adversarial networks (GANs) for EEG signal modeling. We investigate the method’s ability to jointly learn coherent generation and inverse inference models on the CHI-MIT epilepsy multi-channel EEG dataset. We further study the efficacy of the learned representations in epilepsy seizure detection formulated as an unsupervised learning problem. Quantitative and qualitative experimental results demonstrate the effectiveness and efficiency of our approach.more » « less
-
Objective Sudden unexpected death in epilepsy (SUDEP) is the leading cause of epilepsy-related mortality. Although lots of effort has been made in identifying clinical risk factors for SUDEP in the literature, there are few validated methods to predict individual SUDEP risk. Prolonged postictal EEG suppression (PGES) is a potential SUDEP biomarker, but its occurrence is infrequent and requires epilepsy monitoring unit admission. We use machine learning methods to examine SUDEP risk using interictal EEG and ECG recordings from SUDEP cases and matched living epilepsy controls. Methods This multicenter, retrospective, cohort study examined interictal EEG and ECG recordings from 30 SUDEP cases and 58 age-matched living epilepsy patient controls. We trained machine learning models with interictal EEG and ECG features to predict the retrospective SUDEP risk for each patient. We assessed cross-validated classification accuracy and the area under the receiver operating characteristic (AUC) curve. Results The logistic regression (LR) classifier produced the overall best performance, outperforming the support vector machine (SVM), random forest (RF), and convolutional neural network (CNN). Among the 30 patients with SUDEP [14 females; mean age (SD), 31 (8.47) years] and 58 living epilepsy controls [26 females (43%); mean age (SD) 31 (8.5) years], the LR model achieved the median AUC of 0.77 [interquartile range (IQR), 0.73–0.80] in five-fold cross-validation using interictal alpha and low gamma power ratio of the EEG and heart rate variability (HRV) features extracted from the ECG. The LR model achieved the mean AUC of 0.79 in leave-one-center-out prediction. Conclusions Our results support that machine learning-driven models may quantify SUDEP risk for epilepsy patients, future refinements in our model may help predict individualized SUDEP risk and help clinicians correlate predictive scores with the clinical data. Low-cost and noninvasive interictal biomarkers of SUDEP risk may help clinicians to identify high-risk patients and initiate preventive strategies.more » « less
-
Summary Objective Identification of patient‐specific epileptogenic networks is critical to designing successful treatment strategies. Multiple noninvasive methods have been used to characterize epileptogenic networks. However, these methods lack the spatiotemporal resolution to allow precise localization of epileptiform activity. We used intracranial recordings, at much higher spatiotemporal resolution, across a cohort of patients with mesial temporal lobe epilepsy (
MTLE ) to delineate features common to their epileptogenic networks. We used interictal rather than seizure data because interictal spikes occur more frequently, providing us greater power for analyzing variances in the network.Methods Intracranial recordings from 10 medically refractory
MTLE patients were analyzed. In each patient, hour‐long recordings were selected for having frequent interictal discharges and no ictal events. For all possible pairs of electrodes, conditional probability of the occurrence of interictal spikes within a 150‐millisecond bin was computed. These probabilities were used to construct a weighted graph between all electrodes, and the node degree was estimated. To assess the relationship of the highly connected regions in this network to the clinically identified seizure network, logistic regression was used to model the regions that were surgically resected using weighted node degree and number of spikes in each channel as factors. Lastly, the conditional spike probability was normalized and averaged across patients to visualize theMTLE network at group level.Results We generated the first graph of connectivity across a cohort of
MTLE patients using interictal activity. The most consistent connections were hippocampus to amygdala, anterior fusiform cortex to hippocampus, and parahippocampal gyrus projections to amygdala. Additionally, the weighted node degree and number of spikes modeled the brain regions identified as seizure networks by clinicians.Significance Apart from identifying interictal measures that can model patient‐specific epileptogenic networks, we also produce a group map of network connectivity from a cohort of
MTLE patients.