skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 18, 2026

Title: Examining Imbalance Effects on Performance and Demographic Fairness of Clinical Language Models
Data imbalance is a fundamental challenge in ap- plying language models to biomedical applications, particularly in ICD code prediction tasks where label and demographic distributions are uneven. While state-of-the-art language models have been increasingly adopted in biomedical tasks, few studies have systematically examined how data imbalance affects model performance and fairness across demographic groups. This study fills the gap by statistically probing the relationship between data imbalance and model performance in ICD code prediction. We analyze imbalances in a standard benchmark data across gender, age, ethnicity, and social determinants of health by state- of-the-art biomedical language models. By deploying diverse performance metrics and statistical analyses, we explore the influence of data imbalance on performance variations and demographic fairness. Our study shows that data imbalance significantly impacts model performance and fairness, but feature similarity to the majority class may be a more critical factor. We believe this study provides valuable insights for developing more equitable and robust language models in healthcare applications.  more » « less
Award ID(s):
2245920
PAR ID:
10621305
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3315-2094-6
Page Range / eLocation ID:
58 to 68
Format(s):
Medium: X
Location:
Rende, Italy
Sponsoring Org:
National Science Foundation
More Like this
  1. Time roots in applying language models for biomedical applications: models are trained on historical data and will be deployed for new or future data, which may vary from training data. While increasing biomedical tasks have employed state-of-the-art language models, there are very few studies have examined temporal effects on biomedical models when data usually shifts across development and deployment. This study fills the gap by statistically probing relations between language model performance and data shifts across three biomedical tasks. We deploy diverse metrics to evaluate model performance, distance methods to measure data drifts, and statistical methods to quantify temporal effects on biomedical language models. Our study shows that time matters for deploying biomedical language models, while the degree of performance degradation varies by biomedical tasks and statistical quantification approaches. We believe this study can establish a solid benchmark to evaluate and assess temporal effects on deploying biomedical language models. 
    more » « less
  2. This paper studies the performance of large language models (LLMs), particularly regarding demographic fairness, in solving real-world healthcare tasks. We evaluate state-of-the-art LLMs with three prevalent learning frameworks across six diverse healthcare tasks and find significant challenges in applying LLMs to real-world healthcare tasks and persistent fairness issues across demographic groups. We also find that explicitly providing demographic information yields mixed results, while LLM`s ability to infer such details raises concerns about biased health predictions. Utilizing LLMs as autonomous agents with access to up-to-date guidelines does not guarantee performance improvement. We believe these findings reveal the critical limitations of LLMs in healthcare fairness and the urgent need for specialized research in this area. 
    more » « less
  3. This paper studies the performance of large language models (LLMs), particularly regarding demographic fairness, in solving real-world healthcare tasks. We evaluate state-of-the-art LLMs with three prevalent learning frameworks across six diverse healthcare tasks and find significant challenges in applying LLMs to real-world healthcare tasks and persistent fairness issues across demographic groups. We also find that explicitly providing demographic information yields mixed results, while LLM’s ability to infer such details raises concerns about biased health predictions. Utilizing LLMs as autonomous agents with access to up-to-date guidelines does not guarantee performance improvement. We believe these findings reveal the critical limitations of LLMs in healthcare fairness and the urgent need for specialized research in this area. 
    more » « less
  4. Emerging transportation modes, including car-sharing, bike-sharing, and ride-hailing, are transforming urban mobility yet have been shown to reinforce socioeconomic inequity. These services rely on accurate demand prediction, but the demand data on which these models are trained reflect biases around demographics, socioeconomic conditions, and entrenched geographic patterns. To address these biases and improve fairness, we present FairST, a fairness-aware demand prediction model for spatiotemporal urban applications, with emphasis on new mobility. We use 1D (time-varying, space-constant), 2D (space-varying, time-constant) and 3D (both time- and space-varying) convolutional branches to integrate heterogeneous features, while including fairness metrics as a form of regularization to improve equity across demographic groups. We propose two spatiotemporal fairness metrics, region-based fairness gap (RFG), applicable when demographic information is provided as a constant for a region, and individual-based fairness gap (IFG), applicable when a continuous distribution of demographic information is available. Experimental results on bike share and ride share datasets show that FairST can reduce inequity in demand prediction for multiple sensitive attributes (i.e. race, age, and education level), while achieving better accuracy than even state-of-the-art fairness-oblivious methods. 
    more » « less
  5. Pretraining a language model (LM) on text has been shown to help various downstream NLP tasks. Recent works show that a knowledge graph (KG) can complement text data, offering structured background knowledge that provides a useful scaffold for reasoning. However, these works are not pretrained to learn a deep fusion of the two modalities at scale, limiting the potential to acquire fully joint representations of text and KG. Here we propose DRAGON (Deep Bidirectional Language-Knowledge Graph Pretraining), a self-supervised approach to pretraining a deeply joint language-knowledge foundation model from text and KG at scale. Specifically, our model takes pairs of text segments and relevant KG subgraphs as input and bidirectionally fuses information from both modalities. We pretrain this model by unifying two self-supervised reasoning tasks, masked language modeling and KG link prediction. DRAGON outperforms existing LM and LM+KG models on diverse downstream tasks including question answering across general and biomedical domains, with +5% absolute gain on average. In particular, DRAGON achieves notable performance on complex reasoning about language and knowledge (+10% on questions involving long contexts or multi-step reasoning) and low-resource QA (+8% on OBQA and RiddleSense), and new state-of-the-art results on various BioNLP tasks. Our code and trained models are available at https://github.com/michiyasunaga/dragon. 
    more » « less