This paper studies the performance of large language models (LLMs), particularly regarding demographic fairness, in solving real-world healthcare tasks. We evaluate state-of-the-art LLMs with three prevalent learning frameworks across six diverse healthcare tasks and find significant challenges in applying LLMs to real-world healthcare tasks and persistent fairness issues across demographic groups. We also find that explicitly providing demographic information yields mixed results, while LLM`s ability to infer such details raises concerns about biased health predictions. Utilizing LLMs as autonomous agents with access to up-to-date guidelines does not guarantee performance improvement. We believe these findings reveal the critical limitations of LLMs in healthcare fairness and the urgent need for specialized research in this area. 
                        more » 
                        « less   
                    This content will become publicly available on January 1, 2026
                            
                            Unveiling Performance Challenges of Large Language Models in Low-Resource Healthcare: A Demographic Fairness Perspective
                        
                    
    
            This paper studies the performance of large language models (LLMs), particularly regarding demographic fairness, in solving real-world healthcare tasks. We evaluate state-of-the-art LLMs with three prevalent learning frameworks across six diverse healthcare tasks and find significant challenges in applying LLMs to real-world healthcare tasks and persistent fairness issues across demographic groups. We also find that explicitly providing demographic information yields mixed results, while LLM’s ability to infer such details raises concerns about biased health predictions. Utilizing LLMs as autonomous agents with access to up-to-date guidelines does not guarantee performance improvement. We believe these findings reveal the critical limitations of LLMs in healthcare fairness and the urgent need for specialized research in this area. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2312862
- PAR ID:
- 10635221
- Publisher / Repository:
- International Committee on Computational Linguistics (ICCL)
- Date Published:
- Journal Name:
- International conference on computational linguistics
- ISSN:
- 2951-2093
- Format(s):
- Medium: X
- Location:
- Abu Dhabi, UAE
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Instruction-tuned Large Language Models (LLMs) can perform a wide range of tasks given natural language instructions to do so, but they are sensitive to how such instructions are phrased. This issue is especially concerning in healthcare, as clinicians are unlikely to be experienced prompt engineers and the potential consequences of inaccurate outputs are heightened in this domain. This raises a practical question: How robust are instruction-tuned LLMs to natural variations in the instructions provided for clinical NLP tasks? We collect prompts from medical doctors across a range of tasks and quantify the sensitivity of seven LLMs—some general, others specialized—to natural (i.e., non-adversarial) instruction phrasings. We find that performance varies substantially across all models, and that—perhaps surprisingly—domain-specific models explicitly trained on clinical data are especially brittle, compared to their general domain counterparts. Further, arbitrary phrasing differences can affect fairness, e.g., valid but distinct instructions for mortality prediction yield a range both in overall performance, and in terms of differences between demographic groups.more » « less
- 
            Data imbalance is a fundamental challenge in ap- plying language models to biomedical applications, particularly in ICD code prediction tasks where label and demographic distributions are uneven. While state-of-the-art language models have been increasingly adopted in biomedical tasks, few studies have systematically examined how data imbalance affects model performance and fairness across demographic groups. This study fills the gap by statistically probing the relationship between data imbalance and model performance in ICD code prediction. We analyze imbalances in a standard benchmark data across gender, age, ethnicity, and social determinants of health by state- of-the-art biomedical language models. By deploying diverse performance metrics and statistical analyses, we explore the influence of data imbalance on performance variations and demographic fairness. Our study shows that data imbalance significantly impacts model performance and fairness, but feature similarity to the majority class may be a more critical factor. We believe this study provides valuable insights for developing more equitable and robust language models in healthcare applications.more » « less
- 
            Large Language Models (LLMs) have demonstrated remarkable success across various domains. However, despite their promising performance in numerous real-world applications, most of these algorithms lack fairness considerations. Consequently, they may lead to discriminatory outcomes against certain communities, particularly marginalized populations, prompting extensive study in fair LLMs. On the other hand, fairness in LLMs, in contrast to fairness in traditional machine learning, entails exclusive backgrounds, taxonomies, and fulfillment techniques. To this end, this survey presents a comprehensive overview of recent advances in the existing literature concerning fair LLMs. Specifically, a brief introduction to LLMs is provided, followed by an analysis of factors contributing to bias in LLMs. Additionally, the concept of fairness in LLMs is discussed categorically, summarizing metrics for evaluating bias in LLMs and existing algorithms for promoting fairness. Furthermore, resources for evaluating bias in LLMs, including toolkits and datasets, are summarized. Finally, existing research challenges and open questions are discussed.more » « less
- 
            Recently, there has been a growing interest in developing machine learning (ML) models that can promote fairness, i.e., eliminating biased predictions towards certain populations (e.g., individuals from a specific demographic group). Most existing works learn such models based on well-designed fairness constraints in optimization. Nevertheless, in many practical ML tasks, only very few labeled data samples can be collected, which can lead to inferior fairness performance. This is because existing fairness constraints are designed to restrict the prediction disparity among different sensitive groups, but with few samples, it becomes difficult to accurately measure the disparity, thus rendering ineffective fairness optimization. In this paper, we define the fairness-aware learning task with limited training samples as the fair few-shot learning problem. To deal with this problem, we devise a novel framework that accumulates fairness-aware knowledge across different meta-training tasks and then generalizes the learned knowledge to meta-test tasks. To compensate for insufficient training samples, we propose an essential strategy to select and leverage an auxiliary set for each meta-test task. These auxiliary sets contain several labeled training samples that can enhance the model performance regarding fairness in meta-test tasks, thereby allowing for the transfer of learned useful fairness-oriented knowledge to meta-test tasks. Furthermore, we conduct extensive experiments on three real-world datasets to validate the superiority of our framework against the state-of-the-art baselines.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
