Let be a countable abelian group. An (abstract) -system - that is, an (abstract) probability space equipped with an (abstract) probability-preserving action of - is said to be aConze–Lesigne systemif it is equal to its second Host–Kra–Ziegler factor . The main result of this paper is a structural description of such Conze–Lesigne systems for arbitrary countable abelian , namely that they are the inverse limit of translational systems arising from locally compact nilpotent groups of nilpotency class , quotiented by a lattice . Results of this type were previously known when was finitely generated, or the product of cyclic groups of prime order. In a companion paper, two of us will apply this structure theorem to obtain an inverse theorem for the Gowers norm for arbitrary finite abelian groups .
more »
« less
On the Boundary Behavior of Mass-Minimizing Integral Currents
Let be a smooth Riemannian manifold, a smooth closed oriented submanifold of codimension higher than and an integral area-minimizing current in which bounds . We prove that the set of regular points of at the boundary is dense in . Prior to our theorem the existence of any regular point was not known, except for some special choice of and . As a corollary of our theorem we answer to a question in Almgren’sAlmgren’s big regularity paperfrom 2000 showing that, if is connected, then has at least one point of multiplicity , namely there is a neighborhood of the point where is a classical submanifold with boundary ; we generalize Almgren’s connectivity theorem showing that the support of is always connected if is connected; we conclude a structural result on when consists of more than one connected component, generalizing a previous theorem proved by Hardt and Simon in 1979 when and is -dimensional.
more »
« less
- Award ID(s):
- 1854147
- PAR ID:
- 10532757
- Publisher / Repository:
- American Mathematical Society
- Date Published:
- Journal Name:
- Memoirs of the American Mathematical Society
- Volume:
- 291
- Issue:
- 1446
- ISSN:
- 0065-9266
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Let be an ergodic -step nilsystem for . We adapt an argument of Parry [Topology 9 (1970), pp. 217–224] to show that decomposes as a sum of a subspace with discrete spectrum and a subspace of Lebesgue spectrum with infinite multiplicity. In particular, we generalize a result previously established by Host–Kra–Maass [J. Anal. Math.124(2014), pp. 261–295] for -step nilsystems and a result by Stepin [Uspehi Mat. Nauk24(1969), pp. 241–242] for nilsystems with connected, simply connected .more » « less
-
We show that for primes with , the class number of is divisible by . Our methods are via congruences between Eisenstein series and cusp forms. In particular, we show that when , there is always a cusp form of weight and level whose th Fourier coefficient is congruent to modulo a prime above , for all primes . We use the Galois representation of such a cusp form to explicitly construct an unramified degree- extension of .more » « less
-
In this paper we consider which families of finite simple groups have the property that for each there exists such that, if and are normal subsets of with at least elements each, then every non-trivial element of is the product of an element of and an element of . We show that this holds in a strong and effective sense for finite simple groups of Lie type of bounded rank, while it does not hold for alternating groups or groups of the form where is fixed and . However, in the case and alternating this holds with an explicit bound on in terms of . Related problems and applications are also discussed. In particular we show that, if are non-trivial words, is a finite simple group of Lie type of bounded rank, and for , denotes the probability that where are chosen uniformly and independently, then, as , the distribution tends to the uniform distribution on with respect to the norm.more » « less
-
We formulate a plausible conjecture for the optimal Ehrhard-type inequality for convex symmetric sets with respect to the Gaussian measure. Namely, letting and , we conjecture that the function , given by (with an appropriate choice of a decomposition and coefficients ) satisfies, for all symmetric convex sets and , and any , We explain that this conjecture is “the most optimistic possible”, and is equivalent to the fact that for any symmetric convex set , itsGaussian concavity power is greater than or equal to , for some . We call the sets round -cylinders; they also appear as the conjectured Gaussian isoperimetric minimizers for symmetric sets, see Heilman [Amer. J. Math. 143 (2021), pp. 53–94]. In this manuscript, we make progress towards this question, and show that for any symmetric convex set in , where is the torsional rigidity of with respect to the Gaussian measure.Moreover, the equality holds if and only if for some and .As a consequence, we get where is a certain rational function of degree , the expectation is taken with respect to the restriction of the Gaussian measure onto , is the Minkowski functional of , and is the in-radius of . The result follows via a combination of some novel estimates, the method (previously studied by several authors, notably Kolesnikov and Milman [J. Geom. Anal. 27 (2017), pp. 1680–1702; Amer. J. Math. 140 (2018), pp. 1147–1185;Geometric aspects of functional analysis, Springer, Cham, 2017; Mem. Amer. Math. Soc. 277 (2022), v+78 pp.], Kolesnikov and the author [Adv. Math. 384 (2021), 23 pp.], Hosle, Kolesnikov, and the author [J. Geom. Anal. 31 (2021), pp. 5799–5836], Colesanti [Commun. Contemp. Math. 10 (2008), pp. 765–772], Colesanti, the author, and Marsiglietti [J. Funct. Anal. 273 (2017), pp. 1120–1139], Eskenazis and Moschidis [J. Funct. Anal. 280 (2021), 19 pp.]), and the analysis of the Gaussian torsional rigidity. As an auxiliary result on the way to the equality case characterization, we characterize the equality cases in the “convex set version” of the Brascamp-Lieb inequality, and moreover, obtain a quantitative stability version in the case of the standard Gaussian measure; this may be of independent interest. All the equality case characterizations rely on the careful analysis of the smooth case, the stability versions via trace theory, and local approximation arguments. In addition, we provide a non-sharp estimate for a function whose composition with is concave in the Minkowski sense for all symmetric convex sets.more » « less
An official website of the United States government

