The assembly and dynamics of polyelectrolyte complexes (PECs) and polyelectrolyte multilayers (PEMs) are influenced by water content, pH, and salt concentration. However, the influence of divalent salts on the assembly of polyelectrolyte complexes remains unclear. This work showcases that divalent chloride salts directly impact the glass transition temperature and the ion–ion interactions within PECs. Here, poly(diallyldimethylammonium)–poly(styrene sulfonate) (PDADMA–PSS) PECs are assembled in solutions containing MgCl2 and CaCl2 (following the Hofmeister series). These PECs are studied for the cations’ influence on physicochemical properties (glass transition, polymer composition, ion pairing) at varying salt concentrations (0.03 M, 0.10 M, 0.15 M, and 0.20 M). Modulated differential scanning calorimetry (MDSC) experiments demonstrate that PECs assembled with CaCl2 have a significantly higher glass transition temperature when compared to PECs assembled with MgCl2. Neutron activation analysis (NAA) and nuclear magnetic resonance (NMR) spectroscopy demonstrate that this difference is due to strong ion-specific effects influencing the ratio of intrinsic and extrinsic ion pairings in the system. Furthermore, this study demonstrates a universal linear relationship between the thermal transition and the number of water molecules surrounding oppositely charged polyelectrolyte–polyelectrolyte intrinsic ion pairs, even when the salt contains divalent cations. Ion-specific trends have implications on the glass transition and composition of PDADMA–PSS PECs. Divalent salts not only follow the trend of the Hofmeister series but also introduce bridging into the polyelectrolyte complex; however, the structural relaxation of the PEC remains the same. This study offers a bridge between divalent cation behavior on polymer assembly properties and its transition to industrial applications such as controlled drug delivery, sensors, and water purification.
more »
« less
Formamide as a Robust Alternative to Water for Plasticizing Polyelectrolyte Complexes
Polyelectrolyte complexes, PECs, are glassy and brittle when dry but may be plasticized with water. Though hydrated PECs contain a high proportion of water, many still exhibit a glass transition in the 0 to 100 oC range. The apparently unique effectiveness of water as a plasticizer of PECs has been an obstacle to further developments in applications and in fundamental studies of PEC properties. In this work it is shown that formamide is an excellent and even superior solvent for plasticizing PECs, substantially decreasing glass transition temperatures relative to those of hydrated PECs when formamide is used as a solvent instead. The affinities of PECs for water and formamide, indicated by the (exothermic) enthalpies of solvent swelling of dry PECs, are comparable. Ion transport dynamics revealed similar lifetimes, about 1 ns, of charge pairs within a PEC solvated with water compared to formamide, despite the differences in their dielectric constants. Ion transport dynamics, which depend on the mobility of pendant groups, have lower cooperativity than those of the polymer backbone. The use of formamide is a significant experimental variable for reducing the glass transition temperature/viscosity of complexed polyelectrolytes and can turn a solidlike hydrated complex into a fluidlike coacervate.
more »
« less
- Award ID(s):
- 2103703
- PAR ID:
- 10621414
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- Macromolecules
- Volume:
- 57
- Issue:
- 19
- ISSN:
- 0024-9297
- Page Range / eLocation ID:
- 9367 to 9378
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The linear viscoelastic response, LVR, of a hydrated polyelectrolyte complex coacervate, PEC, was evaluated over a range of frequencies, temperatures, and salt concentrations. The PEC was a nearly-stoichiometric blend of a quaternary ammonium poly([3-(methacrylamido)propyl]trimethylammonium chloride), PMAPTAC, and poly(2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt), PAMPS, an aliphatic sulfonate, selected because they remain fully charged over the conditions of use. Narrow molecular weight distribution polyelectrolytes were prepared using fractionation techniques. A partially deuterated version of PMAPTAC was incorporated to determine the coil radius of gyration, Rg, within PECs using small angle neutron scattering. Chain dimensions were determined to be Gaussian with a Kuhn length of 2.37 nm, which remained constant from 25 to 65 0C. The LVR for a series of matched molecular weight PECs, mostly above the entanglement threshold, exhibited crossovers of modulus versus frequency classically attributed to the reptation time, relaxation between entanglements, and the relaxation of a Kuhn length of units (the “monomer” time). The scaling for zero shear viscosity, η0, versus chain length N, was η0 ~ N3.1, in agreement with “sticky reptation” theory. The lifetime and activation energy, Ep, of a pair between polyanion and polycation repeat units, Pol+Pol-, were determined from diffusion coefficients of salt ions within the PEC. The activation energy for LVR of salt-free PECs was 2Ep, showing that the key mechanism limiting the dynamics of undoped PECs is pair exchange. An FTIR technique was used to distinguish whether SCN- acts as a counterion or a co-ion within PECs. Doping of PECs with NaSCN breaks Pol+Pol- pairing efficiently, which decreases effective crosslinking and decreases viscosity. An equation was derived that quantitatively predicts this effect.more » « less
-
null (Ed.)Polymer chain diffusion within a hydrated polyelectrolyte complex, PEC, has been measured using an ultrathin film format prepared by the layer-by-layer method. Isotopically labeled self-exchange of deuterated poly(styrene sulfonate), dPSS, with undeuterated PSS of the same narrow molecular weight distribution permitted reliable estimates of whole-molecule diffusion coefficients, D. Narrow molecular weight distribution poly(diallyldimethylammonium), PDADMA, was used as the polycation for the PEC. Extensive pretreatment of starting films was undertaken to remove residual stress, anisotropy, and layering. PSS/PDADMA “multilayers,” PEMUs, thin enough to provide substantial exchange of polyelectrolyte, even with diffusion coefficients as low as 10–16 cm2 s–1, as a function of salt concentration and temperature were measured for this PEC, which has a glass-transition temperature, Tg, close to room temperature. Two molecular weights of dPSS, about 15 and 100 kDa, presumed to be below and above the entanglement molecular weight, respectively, both diffused faster at higher temperatures with respective activation energies, Ea, of about 21 and 53 kJ mol–1, the latter about the same as Ea for the place exchange between two pairs of PSS:PDADMA. Studies of the linear viscoelastic response of macroscopic PECs showed a difference of about 8 °C in the Tg of the two lengths of PSS complexed with the same PDADMA. Increasing concentrations of NaCl influenced D of 100 kDa PSS but not 15 kDa PSS at room temperature. D was faster in the region of the film near the solution interface, again attributed to a lower Tg caused by greater water content at this interface.more » « less
-
With the rise of green engineering, there is an increasing need to manufacture materials without relying on organic solvents. Using all-aqueous approaches mitigates the industrial safety and environmental concerns that are associated with volatile organic compounds, while enabling scalable and sustainable fabrication processes. Water-insoluble polyelectrolyte complexes (PECs) arise due to the electrostatic attraction between oppositely charged polyelectrolytes in solution. Notably, when salt is present, these rigid or glassy PECs can be transformed into malleable and liquid states, enabling researchers to process solid materials from the previously deemed unprocessable. The liquid PEC phase, also known as a polyelectrolyte complex coacervate, arises through liquid–liquid phase separation and offers a tunable viscosity to match the needs of the processing method. These coacervates exhibit adjustable rheological properties by varying parameters, including temperature, salt type, ionic strength, polymer ratio, and molecular weight. This tunability makes them attractive for applications ranging from coatings and adhesives to biomedical delivery systems. Notably, the transition between liquid and solid PECs is reversible, as removing salt ions restores the physical cross-links. Additionally, PECs exhibit exceptional stability in various organic solvents and solutions with extreme pH values, without requiring chemical cross-linking. However, the aqueous processing strategies and reversibility of PECs have yet to be fully explored. In this Account, we primarily focus on the well-studied PEC system composed of the strong polyelectrolytes poly(sodium 4-styrenesulfonate) and poly(diallyldimethylammonium chloride). First, we describe how salt concentration is a crucial parameter that enables the aqueous processing of coacervates via electrospinning, spin coating, bar casting, and 3D printing into fibers, coatings, membranes, and 3D structures. We also discuss the impact that processing conditions, like drying and quenching, have on the properties of solid materials, such as their porosity and mechanical strength. Next, we highlight reports that explore how the solubility mismatch between polyelectrolyte pairs and salt ions result in solid and liquid PECs that are nonstoichiometric, thereby exhibiting an overcompensation phenomenon or nonstoichiometry. How the mechanical behavior of a material changes as a function of temperature, i.e., their thermomechanical properties, as well as membrane separation performance are notably influenced by nonstoichiometry, even when the degree of nonstoichiometry is minimal. Interestingly, we are starting to see research reports in the literature on how post-treatment methods, including salt and heat annealing, previously applied to polyelectrolyte multilayer films, offer some transferability to bar-casted separation membranes, which warrants further research. We conclude with a forward-looking discussion that highlights the potential opportunities and challenges related to the future implementation of PEC-based materials.more » « less
-
null (Ed.)Polyelectrolyte complexes (PECs) are highly tunable materials that result from the phase separation that occurs upon mixing oppositely charged polymers. Over the years, they have gained interest due to their broad range of applications such as drug delivery systems, protective coatings, food packaging, and surface adhesives. In this review, we summarize the structure, phase transitions, chain dynamics, and rheological and thermal properties of PECs. Although most literature focuses upon the thermodynamics and application of PECs, this review highlights the fundamental role of salt and water on mechanical and thermal properties impacting the PEC's dynamics. A special focus is placed upon experimental results and techniques. Specifically, the review examines phase behaviour and salt partitioning in PECs, as well as different techniques used to measure diffusion coefficients, relaxation times, various superpositioning principles, glass transitions, and water microenvironments in PECs. This review concludes with future areas of opportunity in fundamental studies and best practices in reporting.more » « less
An official website of the United States government

