skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2103703

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Polyelectrolyte complexes, PECs, are glassy and brittle when dry but may be plasticized with water. Though hydrated PECs contain a high proportion of water, many still exhibit a glass transition in the 0 to 100 oC range. The apparently unique effectiveness of water as a plasticizer of PECs has been an obstacle to further developments in applications and in fundamental studies of PEC properties. In this work it is shown that formamide is an excellent and even superior solvent for plasticizing PECs, substantially decreasing glass transition temperatures relative to those of hydrated PECs when formamide is used as a solvent instead. The affinities of PECs for water and formamide, indicated by the (exothermic) enthalpies of solvent swelling of dry PECs, are comparable. Ion transport dynamics revealed similar lifetimes, about 1 ns, of charge pairs within a PEC solvated with water compared to formamide, despite the differences in their dielectric constants. Ion transport dynamics, which depend on the mobility of pendant groups, have lower cooperativity than those of the polymer backbone. The use of formamide is a significant experimental variable for reducing the glass transition temperature/viscosity of complexed polyelectrolytes and can turn a solidlike hydrated complex into a fluidlike coacervate. 
    more » « less
  2. Strong changes in bulk properties, such as modulus and viscosity, are observed near the glass transition temperature, Tg, of amorphous materials. For more than a century, intense efforts have been made to define a microscopic origin for these macroscopic changes in properties. Using transition state theory (TST), we delve into the atomic/molecular level picture of how microscopic localized unit relaxations, or “cage rattles,” evolve to macroscopic structural relaxations above Tg. Unit motion is broken down into two populations: (1) simultaneous rearrangement occurs among a critical number of units, nα, which ranges from 1 to 4, allowing a systematic classification of glass formers, GFs, that is compared to fragility; and (2) near Tg, adjacent units provide additional free volume for rearrangement, not simultaneously, but within the “primitive” lifetime, τ1, of one unit rattling in its cage. Relaxation maps illustrate how Johari–Goldstein β-relaxations stem from the rattle of nα units. We analyzed a wide variety of glassy materials and materials with a glassy response using literature data. Our four-parameter equation fits “strong” and “weak” GFs over the entire range of temperatures and also extends to other glassy systems, such as ion-transporting polymers and ferroelectric relaxors. The role of activation entropy in boosting preexponential factors to high “unphysical” apparent frequencies is discussed. Enthalpy–entropy compensation is clearly illustrated using the TST approach. 
    more » « less
  3. Polyelectrolyte adsorption to surfaces is widely employed in water treatment and mining. However, little is known of the relative interaction strengths between surfaces and polymer. This fundamental property is assumed to be dominated by electrostatics, i.e. attractive interactions between opposite charges, which are set by the overall ionic strength (“salt concentration”) of the solution, and charge densities of the surface and the polymer. A common, counterintuitive, finding is a range of salt concentration over which the amount of adsorbed polyelectrolyte increases as electrostatic interactions are tempered by the addition of salt. After an adsorption maximum, higher salt concentrations then produce the expected gradual desorption of polyelectrolyte. In this work, the salt response of the adsorption of the same narrow molecular weight distribution polycation, poly(N-methyl-4-vinyl pyridinium), PM4VP, to a variety of surfaces was explored. Oxide powders for adsorption included Al2O3, SiO2, Fe2O3, Fe3O4, TiO2, ZnO and CuO. Planar surfaces included silicon wafer, mica, calcium carbonate and CaF2 single crystals. The PM4VP was radiolabeled with 14C so that sensitive, sub-monolayer amounts could be detected. The position of the peak maximum, or the lack of a peak, in response to added salt was used to rank the electrostatic component of the interaction. The importance of charge regulation, a shift in the surface pKa in response to solution species, was highlighted as a mechanism for adsorption on the “wrong” side of the isoelectric point, and also as a factor contributing to the difficulty of reaching the totally desorbed state even at the highest salt concentrations. 
    more » « less
  4. The linear viscoelastic response, LVR, of a hydrated polyelectrolyte complex coacervate, PEC, was evaluated over a range of frequencies, temperatures, and salt concentrations. The PEC was a nearly-stoichiometric blend of a quaternary ammonium poly([3-(methacrylamido)propyl]trimethylammonium chloride), PMAPTAC, and poly(2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt), PAMPS, an aliphatic sulfonate, selected because they remain fully charged over the conditions of use. Narrow molecular weight distribution polyelectrolytes were prepared using fractionation techniques. A partially deuterated version of PMAPTAC was incorporated to determine the coil radius of gyration, Rg, within PECs using small angle neutron scattering. Chain dimensions were determined to be Gaussian with a Kuhn length of 2.37 nm, which remained constant from 25 to 65 0C. The LVR for a series of matched molecular weight PECs, mostly above the entanglement threshold, exhibited crossovers of modulus versus frequency classically attributed to the reptation time, relaxation between entanglements, and the relaxation of a Kuhn length of units (the “monomer” time). The scaling for zero shear viscosity, η0, versus chain length N, was η0 ~ N3.1, in agreement with “sticky reptation” theory. The lifetime and activation energy, Ep, of a pair between polyanion and polycation repeat units, Pol+Pol-, were determined from diffusion coefficients of salt ions within the PEC. The activation energy for LVR of salt-free PECs was 2Ep, showing that the key mechanism limiting the dynamics of undoped PECs is pair exchange. An FTIR technique was used to distinguish whether SCN- acts as a counterion or a co-ion within PECs. Doping of PECs with NaSCN breaks Pol+Pol- pairing efficiently, which decreases effective crosslinking and decreases viscosity. An equation was derived that quantitatively predicts this effect. 
    more » « less
  5. To stabilize and transport them through complex systems, nanoparticles are often encapsulated in polymeric nanocarriers, which are tailored to specific environments. For example, a hydrophilic polymer capsule maintains circulation and stability of nanoparticles in aqueous environments. A more highly-designed nanocarrier might have a hydrophobic core and a hydrophilic shell to allow transport of hydrophobic nanoparticles and pharmaceuticals through physiological media. Polydimethylsiloxane, PDMS, is a hydrophobic material in a liquidlike state at room temperature. The preparation of stable, aqueous dispersions of PDMS droplets in water is problematic due to the intense mismatch in surface energies between PDMS and water. The present work describes the encapsulation of hydrophobic metal- and metal oxide nanoparticles within PDMS nanodroplets using flash nanoprecipitation. The PDMS is terminated by amino groups and the nanodroplet is capped with a layer of poly(styrene sulfonate), forming a glassy outer shell. The hydrophobic nanoparticles nucleate PDMS droplet formation, decreasing the droplet size. The resulting nanocomposite nanodroplets are stable in aqueous salt solutions without the use of surfactants. The hierarchical structuring, elucidated with small angle x-ray scattering, offers a new platform for the isolation and transport of hydrophobic molecules and nanoparticles through aqueous systems. 
    more » « less
  6. Coatings that prevent or decrease fouling are sought for many applications, including those that inhibit the attachment of organisms in aquatic environments. To date, antifouling coatings have mostly followed design criteria assembled over decades: surfaces should be well/strongly hydrated, possess low net charge and maintain a hydrophilic character when exposed to the location of use. Thus, polymers based on ethylene glycol or zwitterionic repeat units have been shown to be highly effective. Unfortunately, hydrated materials can be quite soft, limiting their use in some environments. In a major paradigm shift, this work describes glassy antifouling films made from certain complexes of positive and negative polyelectrolytes. The dense network of electrostatic interactions yields tough materials below the glass transition temperature, Tg, in normal use, while the highly ionic character of these polyelectrolyte complexes ensures strong hydration. The close proximity of equal numbers of opposite charges within these complexes mimics zwitterionic structures. Films, assembled layer-by-layer from aqueous solutions, contained sulfonated poly(ether ether ketone), SPEEK, a rigid polyelectrolyte which binds strongly to a selection of quaternary ammonium polycations. Layer-by-layer buildup of SPEEK and polycations was linear, indicating strong complexes between polyelectrolytes. Calorimetry also showed complex formation was exothermic. Surfaces coated with these films in the 100 nm thickness range completely resisted adhesion of the common flagellate green algae, Chlamydomonas reinhardtii which were removed from surfaces at the minimum applied flow rate of 0.8 cm s-1. The total surface charge density of adsorbed cations, determined with a sensitive radioisotopic label, was very low, around 10% of a monolayer, which minimized adsorption driven by counterion release from the surface. The viscoelastic properties of the complexes, which were stable even in concentrated salt solutions, were explored using rheology of bulk samples. When fully hydrated, their Tgs were observed to be above 75 oC. 
    more » « less