skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: FoldMecha: Exploratory Design and Engineering of Mechanical Papercraft
We present FoldMecha, a computer-aided design (CAD) system for exploratory construction of mechanical papercraft. FoldMecha enables students to (a) design their own movements with simple mechanisms by modifying parameters and (b) build physical prototypes. This paper describes the system, as well as associated prototyping methods that make the construction process easier and more adaptable to widely different creations. The paper also discusses a week-long workshop that we held with six teenagers using FoldMecha. The teens successfully designed and built their own mechanisms, and adapted them to a variety of creations. Throughout the workshop, they progressively achieved an advanced level of skill and understanding about mechanical movements.  more » « less
Award ID(s):
1735836
PAR ID:
10621524
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Inakage, M; Ishii, H; Doh, E; Peiris, R; Steimle, J; Shaer, O; Kunze, K
Publisher / Repository:
ACM
Date Published:
ISBN:
9781450346764
Page Range / eLocation ID:
131 to 139
Subject(s) / Keyword(s):
computer-aided design, education software, simulator
Format(s):
Medium: X
Location:
Yokohama Japan
Sponsoring Org:
National Science Foundation
More Like this
  1. The field of human-robot interaction (HRI) research is multidisciplinary and requires researchers to understand diverse fields including computer science, engineering, informatics, philosophy, psychology, and more disciplines. However, it is hard to be an expert in everything. To help HRI researchers develop methodological skills, especially in areas that are relatively new to them, we conducted a virtual workshop, Workshop Your Study Design (WYSD), at the 2021 International Conference on HRI. In this workshop, we grouped participants with mentors, who are experts in areas like real-world studies, empirical lab studies, questionnaire design, interview, participatory design, and statistics. During and after the workshop, participants discussed their proposed study methods, obtained feedback, and improved their work accordingly. In this paper, we present 1) Workshop attendees’ feedback about the workshop and 2) Lessons that the participants learned during their discussions with mentors. Participants’ responses about the workshop were positive, and future scholars who wish to run such a workshop can consider implementing their suggestions. The main contribution of this paper is the lessons learned section, where the workshop participants contributed to forming this section based on what participants discovered during the workshop. We organize lessons learned into themes of 1) Improving study design for HRI, 2) How to work with participants - especially children -, 3) Making the most of the study and robot’s limitations, and 4) How to collaborate well across fields as they were the areas of the papers submitted to the workshop. These themes include practical tips and guidelines to assist researchers to learn about fields of HRI research with which they have limited experience. We include specific examples, and researchers can adapt the tips and guidelines to their own areas to avoid some common mistakes and pitfalls in their research. 
    more » « less
  2. null (Ed.)
    Many of us are working to create a more inclusive and socially just culture within engineering education and engineering. Despite significant effort, marginalization and discrimination continue, buoyed by systems of oppression. How can we disrupt and dismantle oppressive systems in engineering education? In our work, we explore how power and privilege are enacted within leadership teams that aim to create revolutionary changes within engineering departments. Based on this work, we developed the POWER protocol (Privilege and Oppression: Working for Equitable Recourse), a workshop that guides engineering educators to identify and understand the intersectional nature of power and privilege before planning strategies to disrupt, disarm, and dismantle it. In this paper, we present a design case to show how this workshop has evolved. We provide the POWER protocol in the appendix so that others can adapt this workshop for their own contexts. In the interactive session at CoNECD, we will take attendees through part of the POWER protocol (we will scope the workshop to fit in the time allotted; the full workshop is 1.5 hours) to examine how power, privilege, and intersectionality can help attendees frame their experiences and begin to understand how their everyday experiences may be influenced by systemic oppression. To guide this process, we orient around the question: How can we become aware of power and privilege on collaborative academic teams in order to better affect social change and improve interdisciplinary and cross-identity/boundary interactions, communication, and inclusivity? We hope that through interactive sessions such as this that we can all become more persistent and sophisticated in our efforts to dismantle some of these forms of power and privilege within the university, especially those aspects that continue to oppress and oftentimes push marginalized people and perspectives out of academia. Our interactive approach will position attendees to bring this protocol back to their institutions and adapt it to their own contexts. In the tradition of the design case such as those published by the International Journal of Designs for Learning, we detail how our contexts and the literature informed the iterative development of the POWER protocol in this paper. We provide a vivid account of the POWER protocol and a facilitation guide that others can use and adapt in their own contexts. Using a narrative format, we share a forthright account of our development process. Design cases are valuable in highlighting distinctive aspects of how a design came to be; by sharing our design decisions along with the design, others may gain insight into both what has made our design successful, and where it may be brittle when used in new contexts. Finally, we describe how we will engage attendees in the CoNECD session. 
    more » « less
  3. de Vries, E; Hod, Y.; Ahn, J. (Ed.)
    We report on design-based research to refine a professional development workshop that supports teachers to customize online curricula. We iteratively design representations to make the knowledge integration pedagogy of the curricula visible. We study ways to make the work of students using the curricula actionable for participating teachers. We analyze participants’ trajectories across the three iterations of the workshop. Initially, when participants realized they could customize the online curriculum, they developed feelings of ownership. Then, as participants deepened their understanding of the pedagogy, they began to use it to evaluate their own instruction. The trajectory culminated in participants connecting the pedagogy to student work from their own classroom. This led to a shift from focusing on remedies for misconceptions to seeking opportunities for building on students’ nascent ideas when customizing. The workshop refinements empowered teachers to mobilize the pedagogy to interpret their students' work to inform their customization decisions. 
    more » « less
  4. MCVT (Making Computing Visible and Tangible) Cards are a toolkit of paper-based computing cards intended for use in the codesign of inclusive computing education. Working with groups of teachers and students over multiple design sessions, we share our toolkit, design drivers and material considerations; and use cases drawn from a week-long codesign workshop where seven teachers made and adapted cards for their future classroom facilitation. Our findings suggest that teachers valued the MCVT toolkit as a resource for their own learning and perceived the cards to be useful for supporting new computational practices, specifically for learning through making and connecting to examples of everyday computing. Critically reviewed by teachers during codesign workshops, the toolkit however posed some implementation challenges and constraints for learning through making and troubleshooting circuitry. From teacher surveys, interviews, workshop video recordings, and teacher-constructed projects, we show how teachers codesigned new design prototypes and pedagogical activities while also adapting and extending paper-based computing materials so their students could take advantage of the unique technical and expressive affordances of MCVT Cards. Our design research contributes a new perspective on using interactive paper computing cards as a medium for instructional materials development to support more inclusive computing education. 
    more » « less
  5. The goal of this workshop is to have interdisciplinary discussions on family-centered interaction design of technology as an extension to child-centered design. The workshop will discuss the potential benefits of a family-centered approach to design, as well as the challenges and open questions that designers may face when adopting this approach. Through discussions and interactive activities, participants will have the opportunity to discuss and share ideas on how to effectively incorporate a family-centered perspective into their own design processes. A family-centered approach to design has the potential to create more meaningful and contextual experiences for children and their families. 
    more » « less