skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 31, 2026

Title: Exciton Trapping at Shape‐Persistent Molecular Nanotubes
Abstract We report a series of shape‐persistent molecular nanotubes with top rim connectivity traversing from an all‐meta‐ (m4) to an all‐para‐phenylene (p4) bridged species, including all possible members in between them. Single‐crystal X‐ray diffraction (SCXRD) and microcrystal electron diffraction (MicroED) data show a large torsional angle formeta‐phenylenes relative topara‐phenylene rings. Density functional theory (DFT) calculations reproduce the experimental torsional angles and also establish a correlation indicating a gradual increase in strain energy fromm4(∼31 kcal mol−1) top4(∼90 kcal mol−1). Structural transitions fromm4top4lead to additional correlations such as a shift in the lowest absorption wavelength from 330 to 394 nm, a sizeable red shift in the maximum emission wavelength from 444 to 546 nm, and a decrease in fluorescence quantum yield from 0.76 to 0.20, respectively. Time‐dependent (TD)‐DFT analysis of the relaxed excited state (S1’) geometry shows a progression of exciton delocalization aspara‐phenylenes are introduced intom4en route top4, while the overall molecular size remains constant. This effect is directly related to increased π‐conjugation within the nanotube's top‐segment and demonstrates how exciton trapping can take place without changing the nanotube's physical size, e.g., diameter and length.  more » « less
Award ID(s):
2302628
PAR ID:
10621657
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The industrial importance of the CC double bond difunctionalization in vegetable oils/fatty acid chains motivates computational studies aimed at helping to improve experimental protocols. The CC double bond epoxidation is studied with hydrogen peroxide, peracetic acid (CH3CO3H), and performic acid (HCO3H) oxidizing agents. The epoxide ring‐opening mechanism is calculated in the presence of ZnCl2, NiCl2, and FeCl2Lewis acidic catalysts. Computations show that H2O2(∆G= 39 kcal/mol,TS1HP) is not an effective oxidizing agent compared to CH3CO3H (∆G= 29.8 kcal/mol,TS1PA) and HCO3H (∆G= 26.7 kcal/mol,TS1PF). The FeCl2(∆G= 14.7 kcal/mol,TS1FC) coordination to the epoxide oxygen facilitates the ring‐opening via lower energy barriers compared to the ZnCl2(∆G= 19.5 kcal/mol,TS1ZC) and NiCl2(∆G= 29.4 kcal/mol,TS1NC) coordination. ZnCl2was frequently utilized as a catalyst in laboratory‐scale procedures. The energetic span model identifies the FeCl2(FC) catalytic cycle as the best option for the epoxide ring‐opening. 
    more » « less
  2. Abstract Reaction of {LiC6H2−2,4,6‐Cyp3⋅Et2O}2(Cyp=cyclopentyl) (1) of the new dispersion energy donor (DED) ligand, 2,4,6‐triscyclopentylphenyl with SnCl2afforded a mixture of the distannene {Sn(C6H2−2,4,6‐Cyp3)2}2(2), and the cyclotristannane {Sn(C6H2−2,4,6‐Cyp3)2}3(3).2is favored in solution at higher temperature (345 K or above) whereas3is preferred near 298 K. Van't Hoff analysis revealed the3to2conversion has a ΔH=33.36 kcal mol−1and ΔS=0.102 kcal mol−1 K−1, which gives a ΔG300 K=+2.86 kcal mol−1, showing that the conversion of3to2is an endergonic process. Computational studies show that DED stabilization in3is −28.5 kcal mol−1per {Sn(C6H2−2,4,6‐Cyp3)2unit, which exceeds the DED energy in2of −16.3 kcal mol−1per unit. The data clearly show that dispersion interactions are the main arbiter of the3to2equilibrium. Both2and3possess large dispersion stabilization energies which suppress monomer dissociation (supported by EDA results). 
    more » « less
  3. Scott J. Miller (Ed.)
    Ground state destabilization is a promising strategy to modulate rotational barriers in amphidynamic crystals. DFT studies of polar phenylenes installed as rotators in pillared-paddle wheel metal-organic frameworks were performed to investigate the effects of ground state destabilization on their rotational dynamics. We found that as the steric size of phenylene substituents increases the ground state destabilization effect is also increased. Specifically, a significant destabilization of the ground state energy occurred as the size of the substituents increased, with values ranging from 2 kcal/mol to 11.7 kcal/mol. An evalua-tion of the effects of substituents on dipole-dipole interaction energies and rotational barriers suggest that it should be possi-ble to engineer amphidynamic crystals where the dipole-dipole interaction energy becomes comparable to the rotational barri-ers. Notably, dipole-dipole interaction energies reached values ranging from 0.6 kcal/mol to 2.4 kcal/mol. We propose that careful selection of polar substituents with different size may help create temperature-responsive materials with switchable collective polarization. 
    more » « less
  4. ABSTRACT Access to benzofuran‐2(3H)‐one derivatives from readily available substrates under mild conditions is crucial in the pharmaceutical and plastics industries. We identified (Z)‐3‐(2‐phenylhydrazineylidene)benzofuran‐2(3H)‐one (P) during the recrystallization of (E)‐2‐(2,2‐dichloro‐1‐(phenyldiazenyl)vinyl)phenol using a 96% ethanol solution. The mechanism of the unexpected substrate conversion leading toPis investigated using density functional calculations. The computations revealed that ethanol is required to initiate the reaction viaTS1E, which involves a concerted deprotonation of ethanol by the basic diaza group of the substrate and an ethoxy group attacking the electrophilic center (Cl2C), with an energy barrier of 28.3 kcal/mol. The resulting intermediate (I1E) is calculated to be unstable and can yield a cyclic chloroacetal adduct with a lower energy barrier of 2.2 kcal/mol via the ring‐closure transition state (TS2E). In the absence of water, the next steps are impossible because water is required to cleave the ether bond, yieldingP. A small amount of water (4% of the recrystallization solvent) can promote further transformation ofI2Evia the transition statesTS3E(∆G = 11.1 kcal/mol) andTS4E(∆G = 10.5 kcal/mol). A comparison of the ethanol/water‐ and only water‐promoted free energy profiles shows that the presence of ethanol is crucial for lowering the energy barriers (by about 5 kcal/mol) for the initial two steps leading to the cyclic chloroacetal (I2E), whereas water is then required to initiate product formation. 
    more » « less
  5. Abstract Kohn-Sham density functional theory (DFT) is a standard tool in most branches of chemistry, but accuracies for many molecules are limited to 2-3 kcal ⋅ mol−1with presently-available functionals. Ab initio methods, such as coupled-cluster, routinely produce much higher accuracy, but computational costs limit their application to small molecules. In this paper, we leverage machine learning to calculate coupled-cluster energies from DFT densities, reaching quantum chemical accuracy (errors below 1 kcal ⋅ mol−1) on test data. Moreover, density-basedΔ-learning (learning only the correction to a standard DFT calculation, termedΔ-DFT ) significantly reduces the amount of training data required, particularly when molecular symmetries are included. The robustness ofΔ-DFT  is highlighted by correcting “on the fly” DFT-based molecular dynamics (MD) simulations of resorcinol (C6H4(OH)2) to obtain MD trajectories with coupled-cluster accuracy. We conclude, therefore, thatΔ-DFT  facilitates running gas-phase MD simulations with quantum chemical accuracy, even for strained geometries and conformer changes where standard DFT fails. 
    more » « less