skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 1, 2026

Title: Surface segregation in multicomponent magnetic Bismuth ferrite nanoparticles
Abstract Surface segregation is a ubiquitous phenomenon driven by minimization of the total free energy. In this paper we study surface segregation in multicomponent magnetic Bismuth ferrite nanoparticles alloyed with varying amounts of Dysprosium, Zinc and Titanium. We employ surface and bulk sensitive spectroscopic probes to unravel a significant surface segregation of Bismuth oxide and Titanium oxide. High coercive fields of BiFe0.95Ti0.05O3(BFTO) and BiFe0.96(Zn, Ti)0.02O3(BFZTO) at room temperature reveal that they have a strong exchange bias. This suggests that the Titanium oxide is magnetically active, and there is a Ti induceddoferromagnetism in action between these nanoparticles. We show, with the addition of Dy2O3, the Ti induceddoferromagnetism is suppressed making (BDFZTO) superparamagnetic. We observe that all three differently alloyed Bismuth ferrite nanoparticles show a non-saturating paramagnetic background.  more » « less
Award ID(s):
1827690 2044049
PAR ID:
10621733
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IOP
Date Published:
Journal Name:
Physica Scripta
Volume:
100
Issue:
7
ISSN:
0031-8949
Page Range / eLocation ID:
075981
Subject(s) / Keyword(s):
surface segregation, nanoparticels, exchange interaction
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In an effort to reconcile the various interpretations for the cation components of the 2p3/2observed in x-ray photoelectron spectroscopy (XPS) of several spinel oxide materials, the XPS spectra of both spinel alloy nanoparticles and crystalline thin films are compared. We observed that different components of the 2p3/2core level XPS spectra, of these inverse spinel thin films, are distinctly surface and bulk weighted, indicating surface-to-bulk core level shifts in the binding energies. Surface-to-bulk core level shifts in binding energies of Ni and Fe 2p3/2core levels of NiFe2O4thin film are observed in angle-resolved XPS. The ratio between surface-weighted components and bulk-weighted components of the Ni and Fe core levels shows appreciable dependency on photoemission angle, with respect to surface normal. XPS showed that the ferrite nanoparticles NixCo1−xFe2O4(x= 0.2, 0.5, 0.8, 1) resemble the surface of the NiFe2O4thin film. Surface-to-bulk core level shifts are also observed in CoFe2O4and NiCo2O4thin films but not as significantly as in NiFe2O4thin film. Estimates of surface stoichiometry of some spinel oxide nanoparticles and thin films suggested that the apportionment between cationic species present could be farther from expectations for thin films as compared to what is seen with nanoparticles. 
    more » « less
  2. Abstract MXenes are a new family of two-dimensional carbides and/or nitrides. Their 2D surfaces are typically terminated by O, OH and/or F atoms. Here we show that Ti3C2Tx—the most studied compound of the MXene family—is a good acid catalyst, thanks to the surface acid functionalities. We demonstrate this by applying Ti3C2Txin the epoxide ring-opening reaction of styrene oxide (SO) and its isomerization in the liquid phase. Modifying the MXene surface changes the catalytic activity and selectivity. By oxidizing the surface, we succeeded in controlling the type and number of acid sites and thereby improving the yield of the mono-alkylated product to >80%. Characterisation studies show that a thin oxide layer, which forms directly on the Ti3C2Txsurface, is essential for catalysing the SO ring-opening. We hypothesize that two kinds of acid sites are responsible for this catalysis: In the MXene, strong acid sites (both Lewis and Brønsted) catalyse both the ring-opening and the isomerization reactions, while in the Mxene–TiO2composite weaker acid sites catalyse only the ring-opening reaction, increasing the selectivity to the mono-alkylated product. 
    more » « less
  3. Bismuth ferrite (BiFeO3) nanocomposites were synthesized using a novel nano-agitator bead milling method followed by calcination. Bismuth oxide and iron oxide nanoparticles were mixed in a stoichiometric ratio and milled for 3 h and calcined at 650 °C in air. X-ray diffraction with Rietveld refinement, scanning electron microscopy, and transmission electron microscopy techniques were used to elucidate the structure of BiFeO3. The particle diameter was found to be ∼17 nm. Magnetic and electrical measurements were performed, and these results were compared with those of similar methods. Mostly, BiFeO3 was obtained with minor secondary phase formation. The resulting powder was weakly ferromagnetic with a remnant magnetization of 0.078 emu/g. This can be attributed to residual strain and defects introduced during the milling process. Electrical testing revealed a high leakage current density that is typical of undoped bismuth ferrite. 
    more » « less
  4. Alloyed Ba(Zr1−xTix)S3nanoparticles are preparedviaa solution-phase route. The phase evolution from a chalcogenide perovskite phase at lowxto a hexagonal non-perovskite phase at highxis tracked along with changes in the optical properties. 
    more » « less
  5. Abstract Photodeoxygenation of dibenzothiopheneS‐oxide (DBTO) is believed to produce ground‐state atomic oxygen [O(3P)] in solution. Compared with other reactive oxygen species (ROS), O(3P) is a unique oxidant as it is potent and selective. Derivatives of DBTO have been used as O(3P)‐precursors to oxidize variety of molecules, including plasmid DNA, proteins, lipids, thiols, and other small organic molecules. Unfortunately, the photodeoxygenation of DBTO requires ultraviolet irradiation, which is not an ideal wavelength range for biological systems, and has a low quantum yield of approximately 0.003. In this work, benzo[b]naphtho[1,2‐d]selenopheneSe‐oxide, benzo[b]naphtho[2,1‐d]selenopheneSe‐oxide, dinaphtho[2,3‐b:2’,3’‐d]selenopheneSe‐oxide, and perylo[1,12‐b,c,d]selenopheneSe‐oxide were synthesized, and their ability to utilize visible light for generating O(3P) was interrogated. Benzo[b]naphtho[1,2‐d]selenopheneSe‐oxide produces O(3P) upon irradiation centered at 420 nm. Additionally, benzo[b]naphtho[1,2‐d]selenopheneSe‐oxide, benzo[b]naphtho[2,1‐d]selenopheneSe‐oxide, and dinaphtho[2,3‐b:2’,3’‐d]selenopheneSe‐oxide produce O(3P) when irradiated with UVA light and have quantum yields of photodeoxygenation ranging from 0.009 to 0.33. This work increases the utility of photodeoxygenation by extending the range of wavelengths that can be used to generate O(3P) in solution. 
    more » « less