skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: B2 1308+326: A Changing-look Blazar or Not?
Abstract In our previous study, we identified a shift in the synchrotron peak frequency of the blazar B2 1308+326 from 1012.9to 1014.8Hz during a flare, suggesting it could be a changing-look blazar (CLB). In this work, we investigate the changing-look behaviour of B2 1308+326 by analysing a newly acquired optical spectrum and comparing it with an archival spectrum. We find that between the two epochs, the continuum flux increased by a factor of ~4.4, while the Mgiiemission line flux decreased by a factor of 1.4 ± 0.2. Additionally, the equivalent width of the Mgiiline reduced from ~20 to ~3 Å, indicating an apparent shift from a flat-spectrum radio quasar (FSRQ) class to a BL Lacertae (BL Lac) class. Despite this apparent change, the ratio of accretion disk luminosity to Eddington luminosity remains >10−2during both epochs, indicating efficient accretion persists in B2 1308+326. The measured black hole mass remains consistent with an average log M BH = 8.44 M. Our findings suggest that B2 1308+326 is not a genuine CLB but rather an intrinsic FSRQ that emerges as a BL Lac during high-flux states due to enhanced nonthermal emission.  more » « less
Award ID(s):
2411860 2111531
PAR ID:
10621746
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
IOP
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
978
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
120
Subject(s) / Keyword(s):
Flat-spectrum radio quasars Blazars Active galactic nuclei Radio loud quasars Relativistic jets
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We study a magnitude-limited sample of 36 broad-lined type Ic supernovae (SNe Ic-BL) from the Zwicky Transient Facility Bright Transient Survey (detected between 2018 March and 2021 August), which is the largest systematic study of SNe Ic-BL done in literature thus far. We present the light curves (LCs) for each of the SNe and analyze the shape of the LCs to derive empirical parameters, along with the explosion epochs for every event. The sample has an average absolute peak magnitude in therband of M ¯ r , max = 18.51 ± 0.15 mag. Using spectra obtained around peak light, we compute expansion velocities from the Feii5169 Å line for each event with high enough signal-to-noise ratio spectra, and find an average value of v ph ¯ = 16 , 100 ± 1100 km s−1. We also compute bolometric LCs, study the blackbody temperature and radii evolution over time, and derive the explosion properties of the SNe. The explosion properties of the sample have average values of M ¯ Ni = 0.37 0.06 + 0.08 M , M ¯ ej = 2.45 0.41 + 0.47 M , and E ¯ K = ( 4.02 1.00 + 1.37 ) × 10 51 erg. Thirteen events have radio observations from the Very Large Array, with eight detections and five non-detections. We find that the populations that have radio detections and radio non-detections are indistinct from one another with respect to their optically inferred explosion properties, and there are no statistically significant correlations present between the events’ radio luminosities and optically inferred explosion properties. This provides evidence that the explosion properties derived from optical data alone cannot give inferences about the radio properties of SNe Ic-BL and likely their relativistic jet formation mechanisms. 
    more » « less
  2. Abstract We present a toy model for the thermal optical/UV/X-ray emission from tidal disruption events (TDEs). Motivated by recent hydrodynamical simulations, we assume that the debris streams promptly and rapidly circularize (on the orbital period of the most tightly bound debris), generating a hot quasi-spherical pressure-supported envelope of radiusRv∼ 1014cm (photosphere radius ∼1015cm) surrounding the supermassive black hole (SMBH). As the envelope cools radiatively, it undergoes Kelvin–Helmholtz contractionRv∝t−1, its temperature risingTeff∝t1/2while its total luminosity remains roughly constant; the optical luminosity decays as ν L ν R v 2 T eff t 3 / 2 . Despite this similarity to the mass fallback rate M ̇ fb t 5 / 3 , envelope heating from fallback accretion is subdominant compared to the envelope cooling luminosity except near optical peak (where they are comparable). Envelope contraction can be delayed by energy injection from accretion from the inner envelope onto the SMBH in a regulated manner, leading to a late-time flattening of the optical/X-ray light curves, similar to those observed in some TDEs. Eventually, as the envelope contracts to near the circularization radius, the SMBH accretion rate rises to its maximum, in tandem with the decreasing optical luminosity. This cooling-induced (rather than circularization-induced) delay of up to several hundred days may account for the delayed onset of thermal X-rays, late-time radio flares, and high-energy neutrino generation, observed in some TDEs. We compare the model predictions to recent TDE light-curve correlation studies, finding both agreement and points of tension. 
    more » « less
  3. Abstract We analyze variability in 15-season optical lightcurves from the doubly imaged lensed quasar SDSS J165043.44+425149.3 (SDSS1650), comprising five seasons of monitoring data from the Maidanak Observatory (277 nights in total, including the two seasons of data previously presented in Vuissoz et al.), five seasons of overlapping data from the Mercator telescope (269 nights), and 12 seasons of monitoring data from the US Naval Observatory, Flagstaff Station at lower cadence (80 nights). We update the 2007 time-delay measurement for SDSS1650 with these new data, finding a time delay of Δ t AB = 55.1 3.7 + 4.0 days, with image A leading image B. We analyze the microlensing variability in these lightcurves using a Bayesian Monte Carlo technique to yield measurements of the size of the accretion disk atλrest= 2420 Å, finding a half-light radius of log(r1/2/cm) = 16.19 0.58 + 0.38 assuming a 60° inclination angle. This result is unchanged if we model 30% flux contamination from the broad-line region. We use the width of the Mgiiline in the existing Sloan Digital Sky Survey spectra to estimate the mass of this system’s supermassive black hole, findingMBH= 2.47 × 109M. We confirm that the accretion disk size in this system, whose black hole mass is on the very high end of theMBHscale, is fully consistent with the existing quasar accretion disk size–black hole mass relation. 
    more » « less
  4. Abstract We presentCloudFlex, an open-source tool for predicting absorption-line signatures of cool gas in galaxy halos with small-scale structure. Motivated by analyses of ∼104K material in hydrodynamical simulations of turbulent, multiphase media, we model cool gas structures as complexes of cloudlets sampled from a power-law distribution of mass m cl α with velocities drawn from a turbulent velocity field. The user may specifyα, the lower limit of the cloudlet mass distribution ( m cl , min ), and several other parameters that set the mass, size, and velocity distribution of the complex. This permits investigation of the relation between these parameters and absorption-line observables. As a proof-of-concept, we calculate the Mgiiλ2796 absorption induced by the cloudlets in background quasi-stellar object (QSO) spectra. We demonstrate that, at fixed metallicity, the covering fraction of sight lines with equivalent widthsW2796< 0.3 Å increases significantly with decreasing m cl , min , cloudlet number density (ncl), and complex size. We then use this framework to predict the halo-scaleW2796distribution around ∼L*galaxies. We show that the observed incidences ofW2796> 0.3 Å sight lines with impact parameters 10 kpc <R< 50 kpc in projected QSO–galaxy studies are consistent with our model over much of parameter space. However, they are underpredicted by models with m cl , min 100 M andncl≥ 0.03 cm−3, in keeping with a picture in which the inner cool circumgalactic medium (CGM) is dominated by numerous low-mass cloudlets (mcl≲ 100M) with a volume filling factor ≲1%. When used to model absorption-line data sets built from multi-sight line and/or spatially extended background probes,CloudFlexenables detailed constraints on the size and velocity distributions of structures comprising the photoionized CGM. 
    more » « less
  5. Abstract This paper presents a newly established sample of 103 unique galaxies or galaxy groups at 0.4 ≲z≲ 0.7 from the Cosmic Ultraviolet Baryon Survey (CUBS) for studying the warm-hot circumgalactic medium (CGM) probed by both Oviand Neviiiabsorption. The galaxies and associated neighbors are identified at <1 physical Mpc from the sightlines toward 15 CUBS QSOs atzQSO≳ 0.8. A total of 30 galaxies or galaxy groups exhibit associated Oviλλ1031, 1037 doublet absorption within a line-of-sight velocity interval of ±250 km s−1, while the rest show no trace of Ovito a detection limit of log N OVI / cm 2 13.7 . Meanwhile, only five galaxies or galaxy groups exhibit the Neviiiλλ770, 780 doublet absorption, down to a limiting column density of log N NeVIII / cm 2 14.0 . These Ovi- and Neviii-bearing halos reside in different galaxy environments with stellar masses ranging from log M star / M 8 to ≈11.5. The warm-hot CGM around galaxies of different stellar masses and star formation rates exhibits different spatial profiles and kinematics. In particular, star-forming galaxies with log M star / M 9 11 show a significant concentration of metal-enriched warm-hot CGM within the virial radius, while massive quiescent galaxies exhibit flatter radial profiles of both column densities and covering fractions. In addition, the velocity dispersion of Oviabsorption is broad withσυ> 40 km s−1for galaxies of log M star / M > 9 within the virial radius, suggesting a more dynamic warm-hot halo around these galaxies. Finally, the warm-hot CGM probed by Oviand Neviiiis suggested to be the dominant phase in sub-L* galaxies with log M star / M 9 10 based on their high ionization fractions in the CGM. 
    more » « less