skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 26, 2026

Title: ChromaLipSense: Designing a lipstick-based biosensor for metabolic monitoring
Lipstick, a widely used cosmetic, is an ideal substrate for colorimetric biosensors due to its direct contact with saliva, nutrition, frequent use, color range, and discrete nature. This paper presents ChromaLipSense, the design of a lipstick that seamlessly embeds a colorimetric biosensor whose colors change in response to pH levels. ChromaLipSense addresses limitations in existing biosensor technologies, such as portable monitors and transdermal patches, which often pose challenges related to attachment, invasiveness, and electronic requirements. Saliva is suitable for biosensing due to its transparency, regenerability, and health-indicative composition. The main contributions include biosensing lipstick form factor, DIY fabrication process using skin-safe products, design considerations for these devices, and color detection system for biosensor identification and its technical evaluation. ChromaLipSense extends the concept of the ‘Biocosmetic Interface’ which merges cosmetics with biotechnology for chemical analysis to access previously unexplored bodily fluids.  more » « less
Award ID(s):
2146461
PAR ID:
10621760
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
The Design Journal
Date Published:
Journal Name:
The Design Journal
ISSN:
1460-6925
Page Range / eLocation ID:
1 to 23
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Colorimetric sensors offer the prospect for on-demand sensing diagnostics in simple and low-cost form factors, enabling rapid spatiotemporal inspection by digital cameras or the naked eye. However, realizing strong dynamic color variations in response to small changes in sample properties has remained a considerable challenge, which is often pursued through the use of highly responsive materials under broadband illumination. In this work, we demonstrate a general colorimetric sensing technique that overcomes the performance limitations of existing chromatic and luminance-based sensing techniques. Our approach combines structural color optical filters as sensing elements alongside a multichromatic laser illuminant. We experimentally demonstrate our approach in the context of label-free biosensing and achieve ultrasensitive and perceptually enhanced chromatic color changes in response to refractive index changes and small molecule surface attachment. Using structurally enabled chromaticity variations, the human eye is able to resolve ∼0.1-nm spectral shifts with low-quality factor (e.g., Q ∼ 15) structural filters. This enables spatially resolved biosensing in large area (approximately centimeters squared) lithography-free sensing films with a naked eye limit of detection of ∼3 pg/mm 2 , lower than industry standard sensors based on surface plasmon resonance that require spectral or angular interrogation. This work highlights the key roles played by both the choice of illuminant and design of structural color filter, and it offers a promising pathway for colorimetric devices to meet the strong demand for high-performance, rapid, and portable (or point-of-care) diagnostic sensors in applications spanning from biomedicine to environmental/structural monitoring. 
    more » « less
  2. Nanomaterials have been extensively explored in developing sensors due to their unique properties, contributing to the development of reliable sensor designs with improved sensitivity and specificity. Herein, we propose the construction of a fluorescent/electrochemical dual-mode self-powered biosensor for advanced biosensing using DNA-templated silver nanoclusters (AgNCs@DNA). AgNC@DNA, due to its small size, exhibits advantageous characteristics as an optical probe. We investigated the sensing efficacy of AgNCs@DNA as a fluorescent probe for glucose detection. Fluorescence emitted by AgNCs@DNA served as the readout signal as a response to more H2O2 being generated by glucose oxidase for increasing glucose levels. The second readout signal of this dual-mode biosensor was utilized via the electrochemical route, where AgNCs served as charge mediators between the glucose oxidase (GOx) enzyme and carbon working electrode during the oxidation process of glucose catalyzed by GOx. The developed biosensor features low-level limits of detection (LODs), ~23 μM for optical and ~29 μM for electrochemical readout, which are much lower than the typical glucose concentrations found in body fluids, including blood, urine, tears, and sweat. The low LODs, simultaneous utilization of different readout strategies, and self-powered design demonstrated in this study open new prospects for developing next-generation biosensor devices. 
    more » « less
  3. Abstract Aromatic interactions are commonly involved in the assembly of naturally occurring building blocks, and these interactions can be replicated in an artificial setting to produce functional materials. Here we describe a colorimetric biosensor using co‐assembly experiments with plasmonic gold and surfactant‐like peptides (SLPs) spanning a wide range of aromatic residues, polar stretches, and interfacial affinities. The SLPs programmed in DDD−(ZZ)x−FFPC self‐assemble into higher‐order structures in response to a protease and subsequently modulate the colloidal dispersity of gold leading to a colorimetric readout. Results show the strong aggregation propensity of the FFPC tail without polar DDD head. The SLPs were specific to the target protease, i.e., Mpro, a biomarker for SARS‐CoV‐2. This system is a simple and visual tool that senses Mproin phosphate buffer, exhaled breath condensate, and saliva with detection limits of 15.7, 20.8, and 26.1 nM, respectively. These results may have value in designing other protease testing methods. 
    more » « less
  4. Abstract More than half of all Americans suffer from chronic diseases, the leading causes of death and disability. However, prompt treatment of chronic diseases can lead to better patient outcomes and a reduced burden on the healthcare system. This highlights the urgent need for electrochemical (EC) sensors that provide non‐invasive, real‐time monitoring of disease‐indicating biomarkers. Due to their high sensitivity, high selectivity, and cost‐effectiveness, EC biosensors have recently shown tremendous promise for individualized health monitoring. This review explains the working principles of EC biosensors. It summarizes the recent advances and improvements of EC biosensors for detecting biomarkers in different biofluids, including tears, saliva, breath, urine, and sweat. Through a comprehensive overview of EC biosensor technologies, this article is expected to aid the development of flexible and wearable EC biosensing systems that have the potential to provide continuous, long‐term health monitoring for both clinical and at‐home use. 
    more » « less
  5. Abstract Flexible, architectured, photonic nanostructures such as colloidal photonic crystals (CPCs) can serve as colorimetric strain sensors, where external applied strain leads to a noticeable color change. However, CPCs' response to strain is difficult to quantify without the use of optical spectroscopy. Integration of flexible electrical readout of CPCs' color change is a challenge due to a lack of flexible/stretchable electrical transducers. This work details a colorimetric strain sensor with optoelectrical quantification based on an integrated system of CPCs over a crumpled graphene phototransducer, which optoelectrically quantifies CPCs, response to strain. The hybrid system enables direct visual perception of strain, while strain quantification via electrical measurement of the hybrid system outperforms that of crumpled graphene strain sensors by more than 100 times. The unique combination of a photonic sensing element with a deformable transducer will allow for the development of novel, electrically quantifiable colorimetric sensors with high sensitivity. 
    more » « less