skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 10, 2025

Title: Contextual Active Model Selection
While training models and labeling data are resource-intensive, a wealth of pre-trained models and unlabeled data exists. To effectively utilize these resources, we present an approach to actively select pre-trained models while minimizing labeling costs. We frame this as an online contextual active model selection problem: At each round, the learner receives an unlabeled data point as a context. The objective is to adaptively select the best model to make a prediction while limiting label requests. To tackle this problem, we propose CAMS, a contextual active model selection algorithm that relies on two novel components: (1) a contextual model selection mechanism, which leverages context information to make informed decisions about which model is likely to perform best for a given context, and (2) an active query component, which strategically chooses when to request labels for data points, minimizing the overall labeling cost. We provide rigorous theoretical analysis for the regret and query complexity under both adversarial and stochastic settings. Furthermore, we demonstrate the effectiveness of our algorithm on a diverse collection of benchmark classification tasks. Notably, CAMS requires substantially less labeling effort (less than 10%) compared to existing methods on CIFAR10 and DRIFT benchmarks, while achieving similar or better accuracy.  more » « less
Award ID(s):
2332475
PAR ID:
10621890
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
The Thirty-eighth Annual Conference on Neural Information Processing Systems
Date Published:
Format(s):
Medium: X
Location:
Vancouver, Canada
Sponsoring Org:
National Science Foundation
More Like this
  1. How can we collect the most useful labels to learn a model selection policy, when presented with arbitrary heterogeneous data streams? In this paper, we formulate this task as a contextual active model selection problem, where at each round the learner receives an unlabeled data point along with a context. The goal is to output the best model for any given context without obtaining an excessive amount of labels. In particular, we focus on the task of selecting pre-trained classifiers, and propose a contextual active model selection algorithm (CAMS), which relies on a novel uncertainty sampling query criterion defined on a given policy class for adaptive model selection. In comparison to prior art, our algorithm does not assume a globally optimal model. We provide rigorous theoretical analysis for the regret and query complexity under both adversarial and stochastic settings. Our experiments on several benchmark classification datasets demonstrate the algorithm’s effectiveness in terms of both regret and query complexity. Notably, to achieve the same accuracy, CAMS incurs less than 10% of the label cost when compared to the best online model selection baselines on CIFAR10. 
    more » « less
  2. A common problem practitioners face is to select rare events in a large dataset. Unfortunately, standard techniques ranging from pre-trained models to active learning do not leverage proximity structure present in many datasets and can lead to worse-than-random results. To address this, we propose EZMODE, an algorithm for iterative selection of rare events in large, unlabeled datasets. EZMODE leverages active learning to iteratively train classifiers, but chooses the easiest positive examples to label in contrast to standard uncertainty techniques. EZMODE also leverages proximity structure (e.g., temporal sampling) to find difficult positive examples. We show that EZMODE can outperform baselines by up to 130× on a novel, real-world, 9,000 GB video dataset. 
    more » « less
  3. Xu, Jinbo (Ed.)
    Abstract Motivation Cryo-Electron Tomography (cryo-ET) is a 3D bioimaging tool that visualizes the structural and spatial organization of macromolecules at a near-native state in single cells, which has broad applications in life science. However, the systematic structural recognition and recovery of macromolecules captured by cryo-ET are difficult due to high structural complexity and imaging limits. Deep learning-based subtomogram classification has played critical roles for such tasks. As supervised approaches, however, their performance relies on sufficient and laborious annotation on a large training dataset. Results To alleviate this major labeling burden, we proposed a Hybrid Active Learning (HAL) framework for querying subtomograms for labeling from a large unlabeled subtomogram pool. Firstly, HAL adopts uncertainty sampling to select the subtomograms that have the most uncertain predictions. This strategy enforces the model to be aware of the inductive bias during classification and subtomogram selection, which satisfies the discriminativeness principle in AL literature. Moreover, to mitigate the sampling bias caused by such strategy, a discriminator is introduced to judge if a certain subtomogram is labeled or unlabeled and subsequently the model queries the subtomogram that have higher probabilities to be unlabeled. Such query strategy encourages to match the data distribution between the labeled and unlabeled subtomogram samples, which essentially encodes the representativeness criterion into the subtomogram selection process. Additionally, HAL introduces a subset sampling strategy to improve the diversity of the query set, so that the information overlap is decreased between the queried batches and the algorithmic efficiency is improved. Our experiments on subtomogram classification tasks using both simulated and real data demonstrate that we can achieve comparable testing performance (on average only 3% accuracy drop) by using less than 30% of the labeled subtomograms, which shows a very promising result for subtomogram classification task with limited labeling resources. Availability and implementation https://github.com/xulabs/aitom. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  4. In this paper, we study the learning problem in contextual search, which is motivated by applications such as crowdsourcing and personalized medicine experiments. In particular, for a sequence of arriving context vectors, with each context associated with an underlying value, the decision maker either makes a query at a certain point or skips the context. The decision maker will only observe the binary feedback on the relationship between the query point and the value associated with the context. We study a probably approximately correct learning setting, where the goal is to learn the underlying mean value function in context with a minimum number of queries. To address this challenge, we propose a trisection search approach combined with a margin-based active learning method. We show that the algorithm only needs to make [Formula: see text] queries to achieve an ε-estimation accuracy. This sample complexity significantly reduces the required sample complexity in the passive setting where neither sample skipping nor query selection is allowed, which is at least [Formula: see text]. This paper was accepted by J. George Shanthikumar, data science. 
    more » « less
  5. It is common in machine learning applications that unlabeled data are abundant while acquiring labels is extremely difficult. In order to reduce the cost of training model while maintaining the model quality, active learning provides a feasible solution. Instead of acquiring labels for random samples, active learning methods carefully select the data to be labeled so as to alleviate the impact from the redundancy or noise in the selected data and improve the trained model performance. In early stage experimental design, previous active learning methods adopted data reconstruction framework, such that the selected data maintained high representative power. However, these models did not consider the data class structure, thus the selected samples could be predominated by the samples from major classes. Such mechanism fails to include samples from the minor classes thus tends to be less representative. To solve this challenging problem, we propose a novel active learning model for the early stage of experimental design. We use exclusive sparsity norm to enforce the selected samples to be (roughly) evenly distributed among different groups. We provide a new efficient optimization algorithm and theoretically prove the optimal convergence rate O(1/{T^2}). With a simple substitution, we reduce the computational load of each iteration from O(n^3) to O(n^2), which makes our algorithm more scalable than previous frameworks. 
    more » « less