skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Nonnegative Ricci curvature, splitting at infinity, and first Betti number rigidity
We study the rigidity problems for open (complete and noncompact) $$n$$-manifolds with nonnegative Ricci curvature. We prove that if an asymptotic cone of $$M$$ properly contains a Euclidean $$\mathbb{R}^{k-1}$$, then the first Betti number of $$M$$ is at most $n-k$; moreover, if equality holds, then $$M$$ is flat. Next, we study the geometry of the orbit $$\Gamma\tilde{p}$$, where $$\Gamma=\pi_1(M,p)$$ acts on the universal cover $$(\widetilde{M},\tilde{p})$$. Under a similar asymptotic condition, we prove a geometric rigidity in terms of the growth order of $$\Gamma\tilde{p}$$. We also give the first example of a manifold $$M$$ of $$\mathrm{Ric}>0$$ and $$\pi_1(M)=\mathbb{Z}$$ but with a varying orbit growth order.  more » « less
Award ID(s):
2304698
PAR ID:
10623647
Author(s) / Creator(s):
;
Publisher / Repository:
Elsevier Inc.
Date Published:
Journal Name:
Advances in Mathematics
Volume:
459
Issue:
C
ISSN:
0001-8708
Page Range / eLocation ID:
110028
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Given a sequence $$\{Z_d\}_{d\in \mathbb{N}}$$ of smooth and compact hypersurfaces in $${\mathbb{R}}^{n-1}$$, we prove that (up to extracting subsequences) there exists a regular definable hypersurface $$\Gamma \subset {\mathbb{R}}\textrm{P}^n$$ such that each manifold $$Z_d$$ is diffeomorphic to a component of the zero set on $$\Gamma$$ of some polynomial of degree $$d$$. (This is in sharp contrast with the case when $$\Gamma$$ is semialgebraic, where for example the homological complexity of the zero set of a polynomial $$p$$ on $$\Gamma$$ is bounded by a polynomial in $$\deg (p)$$.) More precisely, given the above sequence of hypersurfaces, we construct a regular, compact, semianalytic hypersurface $$\Gamma \subset {\mathbb{R}}\textrm{P}^{n}$$ containing a subset $$D$$ homeomorphic to a disk, and a family of polynomials $$\{p_m\}_{m\in \mathbb{N}}$$ of degree $$\deg (p_m)=d_m$$ such that $$(D, Z(p_m)\cap D)\sim ({\mathbb{R}}^{n-1}, Z_{d_m}),$$ i.e. the zero set of $$p_m$$ in $$D$$ is isotopic to $$Z_{d_m}$$ in $${\mathbb{R}}^{n-1}$$. This says that, up to extracting subsequences, the intersection of $$\Gamma$$ with a hypersurface of degree $$d$$ can be as complicated as we want. We call these ‘pathological examples’. In particular, we show that for every $$0 \leq k \leq n-2$$ and every sequence of natural numbers $$a=\{a_d\}_{d\in \mathbb{N}}$$ there is a regular, compact semianalytic hypersurface $$\Gamma \subset {\mathbb{R}}\textrm{P}^n$$, a subsequence $$\{a_{d_m}\}_{m\in \mathbb{N}}$$ and homogeneous polynomials $$\{p_{m}\}_{m\in \mathbb{N}}$$ of degree $$\deg (p_m)=d_m$$ such that (0.1)$$\begin{equation}b_k(\Gamma\cap Z(p_m))\geq a_{d_m}.\end{equation}$$ (Here $$b_k$$ denotes the $$k$$th Betti number.) This generalizes a result of Gwoździewicz et al. [13]. On the other hand, for a given definable $$\Gamma$$ we show that the Fubini–Study measure, in the Gaussian probability space of polynomials of degree $$d$$, of the set $$\Sigma _{d_m,a, \Gamma }$$ of polynomials verifying (0.1) is positive, but there exists a constant $$c_\Gamma$$ such that $$\begin{equation*}0<{\mathbb{P}}(\Sigma_{d_m, a, \Gamma})\leq \frac{c_{\Gamma} d_m^{\frac{n-1}{2}}}{a_{d_m}}.\end{equation*}$$ This shows that the set of ‘pathological examples’ has ‘small’ measure (the faster $$a$$ grows, the smaller the measure and pathologies are therefore rare). In fact we show that given $$\Gamma$$, for most polynomials a Bézout-type bound holds for the intersection $$\Gamma \cap Z(p)$$: for every $$0\leq k\leq n-2$$ and $t>0$: $$\begin{equation*}{\mathbb{P}}\left(\{b_k(\Gamma\cap Z(p))\geq t d^{n-1} \}\right)\leq \frac{c_\Gamma}{td^{\frac{n-1}{2}}}.\end{equation*}$$ 
    more » « less
  2. Abstract For any compact connected one-dimensional submanifold $$K\subset \mathbb R^{2\times 2}$$ without boundary that has no rank-one connection and is elliptic, we prove the quantitative rigidity estimate $$\begin{align*} \inf_{M\in K}\int_{B_{1/2}}| Du -M |^2\, \textrm{d}x \leq C \int_{B_1} \operatorname{dist}^2(Du, K)\, \textrm{d}x, \qquad\forall u\in H^1(B_1;\mathbb R^2). \end{align*}$$This is an optimal generalization, for compact connected submanifolds of $$\mathbb R^{2\times 2}$$ without boundary, of the celebrated quantitative rigidity estimate of Friesecke, James, and Müller for the approximate differential inclusion into $SO(n)$. The proof relies on the special properties of elliptic subsets $$K\subset{{\mathbb{R}}}^{2\times 2}$$ with respect to conformal–anticonformal decomposition, which provide a quasilinear elliptic partial differential equation satisfied by solutions of the exact differential inclusion $$Du\in K$$. We also give an example showing that no analogous result can hold true in $$\mathbb R^{n\times n}$$ for $$n\geq 3$$. 
    more » « less
  3. Abstract We prove that among all 1-periodic configurations $$\Gamma $$ of points on the real line $$\mathbb{R}$$ the quantities $$\min _{x \in \mathbb{R}} \sum _{\gamma \in \Gamma } e^{- \pi \alpha (x - \gamma )^{2}}$$ and $$\max _{x \in \mathbb{R}} \sum _{\gamma \in \Gamma } e^{- \pi \alpha (x - \gamma )^{2}}$$ are maximized and minimized, respectively, if and only if the points are equispaced and whenever the number of points $$n$$ per period is sufficiently large (depending on $$\alpha $$). This solves the polarization problem for periodic configurations with a Gaussian weight on $$\mathbb{R}$$ for large $$n$$. The first result is shown using Fourier series. The second result follows from the work of Cohn and Kumar on universal optimality and holds for all $$n$$ (independent of $$\alpha $$). 
    more » « less
  4. null (Ed.)
    Abstract We study the Bergman metric of a finite ball quotient $$\mathbb{B}^n/\Gamma $$, where $$n \geq 2$$ and $$\Gamma \subseteq{\operatorname{Aut}}({\mathbb{B}}^n)$$ is a finite, fixed point free, abelian group. We prove that this metric is Kähler–Einstein if and only if $$\Gamma $$ is trivial, that is, when the ball quotient $$\mathbb{B}^n/\Gamma $$ is the unit ball $${\mathbb{B}}^n$$ itself. As a consequence, we characterize the unit ball among normal Stein spaces with isolated singularities and abelian fundamental groups in terms of the existence of a Bergman–Einstein metric. 
    more » « less
  5. We study the fundamental group of an open $$n$$-manifold $$M$$ of nonnegative Ricci curvature with additional stability conditions on $$\widetilde{M}$$, the Riemannian universal cover of $$M$$. We prove that if every asymptotic cone of $$\widetilde{M}$$ is a metric cone, whose cross-section is sufficiently Gromov-Hausdorff close to a prior fixed metric cone, then $$\pi_1(M)$$ is finitely generated and contains a normal abelian subgroup of finite index; if in addition $$\widetilde{M}$$ has Euclidean volume growth of constant at least $$L$$, then we can bound the index of that abelian subgroup by a constant $C(n,L)$. In particular, our result implies that if $$\widetilde{M}$$ has Euclidean volume growth of constant at least $$1-\epsilon(n)$$, then $$\pi_1(M)$$ is finitely generated and $C(n)$-abelian. 
    more » « less