skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 12, 2026

Title: A Wall Behind A Wall: Emerging Regional Censorship in China
Award ID(s):
2333965
PAR ID:
10623719
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3315-2236-0
Page Range / eLocation ID:
1363 to 1380
Format(s):
Medium: X
Location:
San Francisco, CA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. China has long orchestrated its Internet censorship through relatively centralized policies and a unified implementation, known as the Great Firewall of China (GFW). However, since August 2023, anecdotes suggest that the Henan Province has deployed its own regional censorship. In this work, we characterize provincial-level censorship in Henan, and compare it with the national-level GFW. We find that Henan has established TLS SNI-based and HTTP Host-based censorship that inspects and blocks traffic leaving the province. While the Henan Firewall is less sophisticated and less robust against typical network variability, its volatile and aggressive blocking of second-level domains made it block ten times more websites than the GFW at some points in time. Based on the observed parsing flaws and injection behaviors, we introduce simple client-side methods to bypass censorship in the Henan province. Our work documents an alarming sign of regional censorship emerging in China. 
    more » « less
  2. Gradient ascent methods are developed to compute incompressible flows that maximize heat transport between two isothermal no-slip parallel walls. Parameterizing the magnitude of the velocity fields by a Péclet number $Pe$ proportional to their root-mean-square rate of strain, the schemes are applied to compute two-dimensional flows optimizing convective enhancement of diffusive heat transfer, i.e. the Nusselt number $Nu$ up to $$Pe\approx 10^{5}$$ . The resulting transport exhibits a change of scaling from $$Nu-1\sim Pe^{2}$$ for $Pe<10$ in the linear regime to $$Nu\sim Pe^{0.54}$$ for $$Pe>10^{3}$$ . Optimal fields are observed to be approximately separable, i.e. products of functions of the wall-parallel and wall-normal coordinates. Analysis employing a separable ansatz yields a conditional upper bound $${\lesssim}Pe^{6/11}=Pe^{0.\overline{54}}$$ as $$Pe\rightarrow \infty$$ similar to the computationally achieved scaling. Implications for heat transfer in buoyancy-driven Rayleigh–Bénard convection are discussed. 
    more » « less