Abstract. Despite a rich history of studies investigating fluid dynamics over bedforms and dunes in rivers, the spatiotemporal patterns of sub-bedform bedload transport remain poorly understood. Previous experiments assessing the effects of flow separation on downstream fluid turbulent structures and bedload transport suggest that localized, intermittent, high-magnitude transport events (i.e., permeable splat events) play an important role in both downstream and cross-stream bedload transport near flow reattachment. Here, we report results from flume experiments that assess the combined effects of flow separation–reattachment and flow re-acceleration over fixed two-dimensional bedforms (1.7 cm high; 30 cm long). A high-speed camera observed bedload transport along the entirety of the bedform at 250 frames per second. Grain trajectories, grain velocities, and grain transport directions were acquired from bedload images using semiautomated particle-tracking techniques. Downstream and vertical fluid velocities were measured 3 mm above the bed using laser Doppler velocimetry (LDV) at 15 distances along the bedform profile. Mean downstream fluid velocity increases nonlinearly with increasing distance along the bedform. However, observed bedload transport increases linearly with increasing distance along the bedform, except at the crest of the bedform, where both mean downstream fluid velocity and bedload transport decrease substantially. Bedload transport time series and manual particle-tracking data show a zone of high-magnitude, cross-stream transport near flow reattachment, suggesting that permeable splat events play an essential role in the region downstream of flow reattachment.
more »
« less
Seismic Modeling of Bedload Transport in a Gravel‐Bed Alluvial Channel
Recent theoretical models and field observations suggest that fluvial bedload flux can be estimated from seismic energy measured within appropriate frequency bands. We present an application of the Tsai et al. (2012, https://doi.org/10.1029/2011gl050255) bedload seismic model to an ephemeral channel located in the semi‐arid southwestern US and incorporate modifications to better estimate bedload flux in this environment. To test the model, we collected streambank seismic signals and directly measured bedload flux during four flash‐floods. Bedload predictions calculated by inversion from the Tsai model underestimated bedload flux observations by one‐to‐two orders of magnitude at low stages. However, model predictions were better for moderate flow depths (>50 cm), where saltation is expected to dominate bedload transport. We explored three differences between the model assumptions and our field conditions: (a) rolling and sliding particles have different impact frequencies than saltating particles; (b) the velocity and angle of impact of rolling particles onto the riverbed differ; and (c) the fine‐grained alluvial character of this and similar riverbeds leads to inelastic impacts, as opposed to the originally conceptualized elastic impacts onto rigid bedrock. We modified the original model to assume inelastic bed impacts and to incorporate rolling and sliding by adjusting the statistical distributions of bedload impact frequency, velocity, and angle. Our modified “multiple‐transport‐mode bedload seismic model” decreased error relative to observations to less than one order of magnitude across all measured flow conditions. Further investigations in other environmental settings are required to demonstrate the robustness and general applicability of the model.
more »
« less
- Award ID(s):
- 1852794
- PAR ID:
- 10623762
- Publisher / Repository:
- American Geophysical Union
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Earth Surface
- Volume:
- 129
- Issue:
- 9
- ISSN:
- 2169-9003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We calibrated an acoustic pipe microphone system to monitor bedload flux in a sandy, gravel‐bed ephemeral channel. Ours is a first attempt to test the limit of an acoustic surrogate bedload system in a channel with a high content of sand. Calibrations varied in quality; significant data subsetting was required to achieve R2values >0.75. Several data quality issues had to be addressed: (1) apparent pulses, which occur when a sensor records an impulse from sediment impacting the surrounding substrate rather than directly impacting the sensor, were frequent, especially at higher signal amplifications. (2) The impact sensors were frequently covered by gravel sheets. This prompted the development of a cover detection protocol that rejected part of the impact sensor record when at least one sensor was partially or fully covered. (3) Because of the lack of sensor sensitivity to impacts of sand‐sized particles, which was anticipated, and the considerable sand component of bedload in this channel, a grain size‐limited bedload flux was estimated. This was accomplished by sampling the bedload captured by slot samplers and evaluating the variation of grain size with increasing flow strength. This considerably improved the results when compared to attempts at estimating the flux of the entire distribution of grain sizes. This calibration is a successful first attempt, though the impact sensors required several site‐specific calibration steps. A universal set of equations using impact sensors to estimate bedload transport of fine‐gravel with a large content of sand remains elusive. Notwithstanding, our study demonstrates the utility of impact sensor data, producing relatively low root mean square errors that are independent of measurements of flow strength (i.e. discharge). These tools will be particularly useful in settings that would benefit from new methodologies for estimating bedload transport in sand‐rich gravel‐bed rivers, such as the American desert Southwest.more » « less
-
We present the most comprehensive dataset of bedload transport in ephemeral channels compiled to date. These nine ephemeral channels cover a range of dryland climates and channel types. First, we evaluate these channels and how they compare with each other. Next, we contrast this database with a previously compiled bedload dataset encompassing 92 perennial rivers. While previous studies have identified differences between measured bedload flux in perennial and ephemeral systems, we quantify those differences across a wide range of channel types and shear stress conditions. We find that the ephemeral dataset is statistically distinct, showing greater average transport across flow conditions in normalized shear vs. bedload flux space. Prior researchers have variously attributed these high transport rates to a combination of factors that commonly define ephemeral channels: lack of armoring, mixed sand and gravel, flashy hydrographs, erodible banks, and lack of vegetation. We tested the influence of armoring by comparing transport differences at different transport stages, finding that bed armor contributes to the observed differences, but is not the sole reason. In addition to these previously proposed mechanisms, we add that the abundance of very coarse sand and fine gravels in ephemeral channels provides easily-mobilized but difficult-to-suspend particles.more » « less
-
null (Ed.)Bedload particle hops are defined as successive motions of a particle from start to stop, characterizing one of the most fundamental processes of bedload sediment transport in rivers. Although two transport regimes have been recently identified for short and long hops, respectively, there is still the lack of a theory explaining the mean hop distance–travel time scaling for particles performing short hops, which dominate the transport and may cover over 80 % of the total hop events. In this paper, we propose a velocity-variation-based formulation, the governing equation of which is intrinsically identical to that of Taylor dispersion for solute transport within shear flows. The key parameter, namely the diffusion coefficient, can be determined by hop distances and travel times, which are easier to measure and more accurate than particle accelerations. For the first time, we obtain an analytical solution for the mean hop distance–travel time relation valid for the entire range of travel times, which agrees well with the measured data. Regarding travel times, we identify three distinct regimes in terms of different scaling exponents: respectively, $$\sim$$ 1.5 for the initial regime and $$\sim$$ 5/3 for the transition regime, which define the short hops, and 1 for the Taylor dispersion regime defining long hops. The corresponding distribution of the hop distance is analytically obtained and experimentally verified. We also show that the conventionally used exponential distribution, as proposed by Einstein, is solely for long hops. Further validation of the present formulation is provided by comparing the simulated accelerations with measurements.more » « less
-
null (Ed.)We present a database and analyze ground motions recorded during three events that occurred as part of the July 2019 Ridgecrest earthquake sequence: a moment magnitude (M) 6.5 foreshock on a left‐lateral cross fault in the Salt Wells Valley fault zone, an M 5.5 foreshock in the Paxton Ranch fault zone, and the M 7.1 mainshock, also occurring in the Paxton Ranch fault zone. We collected and uniformly processed 1483 three‐component recordings from an array of 824 sensors spanning 10 seismographic networks. We developed site metadata using available data and multiple models for the time‐averaged shear‐wave velocity in the upper 30 m (VS30) and for basin depth terms. We processed ground motions using Next Generation Attenuation (NGA) procedures and computed intensity measures including spectral acceleration at a number of oscillator periods and inelastic response spectra. We compared elastic and inelastic response spectra to seismic design spectra in building codes to evaluate the damage potential of the ground motions at spatially distributed sites. Residuals of the observed spectral accelerations relative to the NGA‐West2 ground‐motion models (GMMs) show good average agreement between observations and model predictions (event terms between about −0.3 and 0.5 for peak ground acceleration to 5 s). The average attenuation with distance is also well captured by the empirical NGA‐West2 GMMs, although azimuthal variations in attenuation were observed that are not captured by the GMMs. An analysis considering directivity and fault‐slip heterogeneity for the M 7.1 event demonstrates that the dispersion in the near‐source ground‐motion residuals can be reduced.more » « less
An official website of the United States government

