Abstract Long-term potentiation (LTP) induces presynaptic bouton enlargement and a reduction in the number of synaptic vesicles. To understand the relationship between these events, we performed 3D analysis of serial section electron micrographs in rat hippocampal area CA1, 2 hours after LTP induction. We observed a high vesicle packing density in control boutons, contrasting with a lower density in most LTP boutons. Notably, the summed membrane area of the vesicles lost in low-density LTP boutons is comparable to the surface membrane required for the observed bouton enlargement when compared to high-density control boutons. These novel findings suggest that presynaptic vesicle density provides a new structural indicator of LTP that supports a local mechanism of bouton enlargement. 
                        more » 
                        « less   
                    This content will become publicly available on November 1, 2025
                            
                            The presynaptic vesicle cluster transitions from a compact to loose organization during long-term potentiation
                        
                    
    
            Abstract Functional and structural elements of synaptic plasticity are tightly coupled, as has been extensively shown for dendritic spines. Here, we interrogated structural features of presynaptic terminals in 3DEM reconstructions from CA1 hippocampal axons that had undergone control stimulation or theta-burst stimulation (TBS) to produce long-term potentiation (LTP). We reveal that after LTP induction, the synaptic vesicle (SV) cluster is less dense, and SVs are more dispersed. The distances between neighboring SVs are greater in less dense terminals and have more SV-associated volume. We characterized the changes to the SV cluster by measuring distances between neighboring SVs, distances to the active zone, and the dispersion of the SV cluster. Furthermore, we compared the distribution of SVs with randomized ones and provided evidence that SVs gained mobility after LTP induction. With a computational model, we can predict the increment of the diffusion coefficient of the SVs in the cluster. Moreover, using a machine learning approach, we identify presynaptic terminals that were potentiated after LTP induction. Lastly, we show that the local SV density is a volume-independent property under strong regulation. Altogether, these results provide evidence that the SV cluster is undergoing a transition during LTP. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2014862
- PAR ID:
- 10623766
- Publisher / Repository:
- bioRxiv
- Date Published:
- Format(s):
- Medium: X
- Institution:
- bioRxiv
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Neurotransmission is sustained by endocytosis and refilling of synaptic vesicles (SVs) locally within the presynapse. Until recently, a consensus formed that after exocytosis, SVs are recovered by either fusion pore closure (kiss-and-run) or clathrin-mediated endocytosis directly from the plasma membrane. However, recent data have revealed that SV formation is more complex than previously envisaged. For example, two additional recycling pathways have been discovered, ultrafast endocytosis and activity-dependent bulk endocytosis, in which SVs are regenerated from the internalized membrane and synaptic endosomes. Furthermore, these diverse modes of endocytosis appear to influence both the molecular composition and subsequent physiological role of individual SVs. In addition, previously unknown complexity in SV refilling and reclustering has been revealed. This review presents a modern view of the SV life cycle and discusses how neuronal subtype, physiological temperature, and individual activity patterns can recruit different endocytic modes to generate new SVs and sculpt subsequent presynaptic performance.more » « less
- 
            Abstract Long‐term potentiation (LTP) is a widely studied form of synaptic plasticity engaged during learning and memory. Here the ultrastructural evidence is reviewed that supports an elevated and sustained increase in the probability of vesicle release and recycling during LTP. In hippocampal area CA1, small dense‐core vesicles and tethered synaptic vesicles are recruited to presynaptic boutons enlarging active zones. By 2 h during LTP, there is a sustained loss of vesicles, especially in presynaptic boutons containing mitochondria and clathrin‐coated pits. This decrease in vesicles accompanies an enlargement of the presynaptic bouton, suggesting they supply membrane needed for the enlarged bouton surface area. The spatial relationship of vesicles to the active zone varies with functional status. Tightly docked vesicles contact the presynaptic membrane and are primed for release of neurotransmitter upon the next action potential. Loosely docked vesicles are located within 8 nm of the presynaptic membrane. Non‐docked vesicles comprise recycling and reserve pools. Vesicles are tethered to the active zone via filaments composed of molecules engaged in docking and release processes. Electron tomography reveals clustering of docked vesicles at higher local densities in active zones after LTP. Furthermore, the tethering filaments on vesicles at the active zone are shorter, and their attachment sites are shifted closer to the active zone. These changes suggest more vesicles are docked, primed and ready for release. The findings provide strong ultrastructural evidence for a long‐lasting increase in release probability following LTP.imagemore » « less
- 
            The occurrence and formation of genomic structural variants (SVs) is known to be influenced by the 3D chromatin architecture, but the extent and magnitude have been challenging to study. Here, we apply Hi-C to study chromatin organization before and after induction of chromothripsis in human cells. We use Hi-C to manually assemble the derivative chromosomes following the occurrence of massive complex rearrangements, which allows us to study the sources of SV formation and their consequences on gene regulation. We observe an action–reaction interplay whereby the 3D chromatin architecture directly impacts the location and formation of SVs. In turn, the SVs reshape the chromatin organization to alter the local topologies, replication timing, and gene regulation in cis . We show that SVs have a strong tendency to occur between similar chromatin compartments and replication timing regions. Moreover, we find that SVs frequently occur at 3D loop anchors, that SVs can cause a switch in chromatin compartments and replication timing, and that this is a major source of SV-mediated effects on nearby gene expression changes. Finally, we provide evidence for a general mechanistic bias of the 3D chromatin on SV occurrence using data from more than 2700 patient-derived cancer genomes.more » « less
- 
            AbstractActivation of the cAMP pathway is one of the common mechanisms underlying long‐term potentiation (LTP). In theDrosophilamushroom body, simultaneous activation of odour‐coding Kenyon cells (KCs) and reinforcement‐coding dopaminergic neurons activates adenylyl cyclase in KC presynaptic terminals, which is believed to trigger synaptic plasticity underlying olfactory associative learning. However, learning induces long‐term depression (LTD) at these synapses, contradicting the universal role of cAMP as a facilitator of transmission. Here, we developed a system to electrophysiologically monitor both short‐term and long‐term synaptic plasticity at KC output synapses and demonstrated that they are indeed an exception in which activation of the cAMP–protein kinase A pathway induces LTD. Contrary to the prevailing model, our cAMP imaging found no evidence for synergistic action of dopamine and KC activity on cAMP synthesis. Furthermore, we found that forskolin‐induced cAMP increase alone was insufficient for plasticity induction; it additionally required simultaneous KC activation to replicate the presynaptic LTD induced by pairing with dopamine. On the other hand, activation of the cGMP pathway paired with KC activation induced slowly developing LTP, proving antagonistic actions of the two second‐messenger pathways predicted by behavioural study. Finally, KC subtype‐specific interrogation of synapses revealed that different KC subtypes exhibit distinct plasticity duration even among synapses on the same postsynaptic neuron. Thus, our work not only revises the role of cAMP in synaptic plasticity by uncovering the unexpected convergence point of the cAMP pathway and neuronal activity, but also establishes the methods to address physiological mechanisms of synaptic plasticity in this important model.image Key pointsAlthough presynaptic cAMP increase generally facilitates synapses, olfactory associative learning inDrosophila, which depends on dopamine and cAMP signalling genes, induces long‐term depression (LTD) at the mushroom body output synapses.By combining electrophysiology, pharmacology and optogenetics, we directly demonstrate that these synapses are an exception where activation of the cAMP–protein kinase A pathway leads to presynaptic LTD.Dopamine‐ or forskolin‐induced cAMP increase alone is not sufficient for LTD induction; neuronal activity, which has been believed to trigger cAMP synthesis in synergy with dopamine input, is required in the downstream pathway of cAMP.In contrast to cAMP, activation of the cGMP pathway paired with neuronal activity induces presynaptic long‐term potentiation, which explains behaviourally observed opposing actions of transmitters co‐released by dopaminergic neurons.Our work not only revises the role of cAMP in synaptic plasticity, but also provides essential methods to address physiological mechanisms of synaptic plasticity in this important model system.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
