skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Synaptic integration of somatosensory and motor cortical inputs onto spiny projection neurons of mice caudoputamen
Abstract The basal ganglia play pivotal roles in motor control and cognitive functioning. These nuclei are embedded in an anatomical loop: cortex to basal ganglia to thalamus back to cortex. We focus here on an essential synapse for descending control, from cortical layer 5 (L5) onto the GABAergic spiny projection neurons (SPNs) of the caudoputamen (CP). We employed genetic labeling to distinguish L5 neurons from somatosensory (S1) and motor (M1) cortices in large volume serial electron microscopy and electrophysiology datasets to better detail these inputs. First, M1 and S1 synapses showed a strong preference to innervate the spines of SPNs and rarely contacted aspiny cells, which are likely to be interneurons. Second, L5 inputs commonly converge from both areas onto single SPNs. Third, compared to unlabeled terminals in CP, those labeled from M1 and S1 show ultrastructural hallmarks of strong driver synapses: They innervate larger spines that were more likely to contain a spine apparatus, more often had embedded mitochondria, and more often contacted multiple targets. Finally, these inputs also demonstrated driver‐like functional properties: SPNs responded to optogenetic activation from S1 and M1 with large EPSP/Cs that depressed and were dependent on ionotropic but not metabotropic receptors. Together, our findings suggest that individual SPNs integrate driver input from multiple cortical areas with implications for how the basal ganglia relay cortical input to provide inhibitory innervation of motor thalamus.  more » « less
Award ID(s):
2014862
PAR ID:
10623803
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Eur J Neurosci
Date Published:
Journal Name:
European Journal of Neuroscience
Volume:
60
Issue:
8
ISSN:
0953-816X
Page Range / eLocation ID:
6107 to 6122
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The anterior dorsolateral striatum (DLS) is heavily innervated by convergent excitatory projections from the primary motor (M1) and sensory cortex (S1) and considered an important site of sensorimotor integration. M1 and S1 corticostriatal synapses have functional differences in their connection strength with striatal spiny projection neurons (SPNs) and fast-spiking interneurons (FSIs) in the DLS and, as a result, exert distinct influences on sensory-guided behaviors. In the present study, we tested whether M1 and S1 inputs exhibit differences in the subcellular anatomical distribution of striatal neurons. We injected adeno-associated viral vectors encoding spaghetti monster fluorescent proteins (sm.FPs) into M1 and S1 in male and female mice and used confocal microscopy to generate 3D reconstructions of corticostriatal inputs to single identified SPNs and FSIs obtained through ex vivo patch clamp electrophysiology. We found that M1 and S1 dually innervate SPNs and FSIs; however, there is a consistent bias towards the M1 input in SPNs that is not found in FSIs. In addition, M1 and S1 inputs were distributed similarly across the proximal, medial, and distal regions of SPN and FSI dendrites. Notably, closely localized M1 and S1 clusters of inputs were more prevalent in SPNs than FSIs, suggesting that cortical inputs are integrated through cell-type specific mechanisms. Our results suggest that the stronger functional connectivity from M1 to SPNs compared to S1, as previously observed, is due to a higher quantity of synaptic inputs. Our results have implications for how sensorimotor integration is performed in the striatum through cell-specific differences in corticostriatal connections. 
    more » « less
  2. Neurons in the thalamic reticular nucleus (TRN) are a primary source of inhibition to the dorsal thalamus and, as they are innervated in part by the cortex, are a means of corticothalamic regulation. Previously, cortical inputs to the TRN were thought to originate solely from layer 6 (L6), but we recently reported the presence of putative synaptic terminals from layer 5 (L5) neurons in multiple cortical areas in the TRN [J. A. Prasad, B. J. Carroll, S. M. Sherman, J. Neurosci. 40, 5785–5796 (2020)]. Here, we demonstrate with electron microscopy that L5 terminals from multiple cortical regions make bona fide synapses in the TRN. We further use light microscopy to localize these synapses relative to recently described TRN subdivisions and show that L5 terminals target the edges of the somatosensory TRN, where neurons reciprocally connect to higher-order thalamus, and that L5 terminals are scarce in the core of the TRN, where neurons reciprocally connect to first-order thalamus. In contrast, L6 terminals densely innervate both edge and core subregions and are smaller than those from L5. These data suggest that a sparse but potent input from L5 neurons of multiple cortical regions to the TRN may yield transreticular inhibition targeted to higher-order thalamus. 
    more » « less
  3. Higher order thalamic neurons receive driving inputs from cortical layer 5 and project back to the cortex, reflecting a transthalamic route for corticocortical communication. To determine whether or not individual neurons integrate signals from different cortical populations, we combined electron microscopy “connectomics” in mice with genetic labeling to disambiguate layer 5 synapses from somatosensory and motor cortices to the higher order thalamic posterior medial nucleus. A significant convergence of these inputs was found on 19 of 33 reconstructed thalamic cells, and as a population, the layer 5 synapses were larger and located more proximally on dendrites than were unlabeled synapses. Thus, many or most of these thalamic neurons do not simply relay afferent information but instead integrate signals as disparate in this case as those emanating from sensory and motor cortices. These findings add further depth and complexity to the role of the higher order thalamus in overall cortical functioning. 
    more » « less
  4. null (Ed.)
    Abstract Sensorimotor integration in the trunk system is poorly understood despite its importance for functional recovery after neurological injury. To address this, a series of mapping studies were performed in the rat. First, the receptive fields (RFs) of cells recorded from thoracic dorsal root ganglia were identified. Second, the RFs of cells recorded from trunk primary sensory cortex (S1) were used to assess the extent and internal organization of trunk S1. Finally, the trunk motor cortex (M1) was mapped using intracortical microstimulation to assess coactivation of trunk muscles with hindlimb and forelimb muscles, and integration with S1. Projections from trunk S1 to trunk M1 were not anatomically organized, with relatively weak sensorimotor integration between trunk S1 and M1 compared to extensive integration between hindlimb S1/M1 and trunk M1. Assessment of response latency and anatomical tracing suggest that trunk M1 is abundantly guided by hindlimb somatosensory information that is derived primarily from the thalamus. Finally, neural recordings from awake animals during unexpected postural perturbations support sensorimotor integration between hindlimb S1 and trunk M1, providing insight into the role of the trunk system in postural control that is useful when studying recovery after injury. 
    more » « less
  5. Abstract Vocal learning in songbirds is mediated by cortico‐basal ganglia circuits that govern diverse functions during different stages of development. We investigated developmental changes in axonal projections to and from motor cortical regions that underlie learned vocal behavior in juvenile zebra finches (Taeniopygia guttata). Neurons in LMAN‐core project to RA, a motor cortical region that drives vocal output; these RA‐projecting neurons send a transient collateral projection to AId, a region adjacent to RA, during early vocal development. Both RA and AId project to a region of dorsal thalamus (DLM), which forms a feedback pathway to cortico‐basal ganglia circuitry. These projections provide pathways conveying efference copy and a means by which information about vocal motor output could be reintegrated into cortico‐basal ganglia circuitry, potentially aiding in the refinement of juvenile vocalizations during learning. We used tract‐tracing techniques to label the projections of LMAN‐core to AId and of RA to DLM in juvenile songbirds. The volume and density of terminal label in the LMAN‐core→AId projection declined substantially during early stages of sensorimotor learning. In contrast, the RA→DLM projection showed no developmental change. The retraction of LMAN‐core→AId axon collaterals indicates a loss of efference copy to AId and suggests that projections that are present only during early stages of sensorimotor learning mediate unique, temporally restricted processes of goal‐directed learning. Conversely, the persistence of the RA→DLM projection may serve to convey motor information forward to the thalamus to facilitate song production during both learning and maintenance of vocalizations. 
    more » « less