skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Measuring the functional complexity of nanoscale connectomes: polarity matters
The emerging electron microscopy connectome datasets provides connectivity maps of the brains at single cell resolution, enabling us to estimate various network statistics, such as connectedness. We desire the ability to assess how the functional complexity of these networks depends on these network statistics. To this end, we developed an analysis pipeline and a statistic, XORness, which quantifies the functional complexity of these networks with varying network statistics. We illustrate that actual connectomes have high XORness, as do generated connectomes with the same network statistics, suggesting a normative role for functional complexity in guiding the evolution of connectomes, and providing clues to guide the development of artificial neural networks.  more » « less
Award ID(s):
2014862
PAR ID:
10623838
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Institution:
bioRxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. NA (Ed.)
    The brain’s functional connectome continually rewires throughout an organism’s life. In this study, we sought to elucidate the operational principles of such rewiring in mouse primary motor cortex (M1) by analyzing calcium imaging of layer 2/3 (L2/3) and layer 5 (L5) neuronal activity in M1 of awake mice during a lever-press task learning. Our results show that L2/3 and L5 functional connectomes follow a similar learning-induced rewiring trajectory. More specifically, the connectomes rewire in a biphasic manner, where functional connectivity increases over the first few learning sessions, and then, it is gradually pruned to return to a homeostatic level of network density. We demonstrated that the increase of network connectivity in L2/3 connectomes, but not in L5, generates neuronal co-firing activity that correlates with improved motor performance (shorter cue-to-reward time), while motor performance remains relatively stable throughout the pruning phase. The results show a biphasic rewiring principle that involves the maximization of reward/performance and maintenance of network density. Finally, we demonstrated that the connectome rewiring in L2/3 is clustered around a core set of movement-associated neurons that form a highly interconnected hub in the connectomes, and that the activity of these core neurons stably encodes movement throughout learning. 
    more » « less
  2. null (Ed.)
    Recent neuroimaging studies have shown that functional connectomes are unique to individuals, i.e., two distinct fMRIs taken over different sessions of the same subject are more similar in terms of their connectomes than those from two different subjects. In this study, we present new results that identify specific parts of resting state and task-specific connectomes that are responsible for the unique signatures. We show that a very small part of the connectome can be used to derive features for discriminating between individuals. A network of these features is shown to achieve excellent training and test accuracy in matching imaging datasets. We show that these features are statistically significant, robust to perturbations, invariant across populations, and are localized to a small number of structural regions of the brain. Furthermore, we show that for task-specific connectomes, the regions identified by our method are consistent with their known functional characterization. We present a new matrix sampling technique to derive computationally efficient and accurate methods for identifying the discriminating sub-connectome and support all of our claims using state-of-the-art statistical tests and computational techniques. 
    more » « less
  3. Abstract The brain has long been conceptualized as a network of neurons connected by synapses. However, attempts to describe the connectome using established network science models have yielded conflicting outcomes, leaving the architecture of neural networks unresolved. Here, by performing a comparative analysis of eight experimentally mapped connectomes, we find that their degree distributions cannot be captured by the well-established random or scale-free models. Instead, the node degrees and strengths are well approximated by lognormal distributions, although these lack a mechanistic explanation in the context of the brain. By acknowledging the physical network nature of the brain, we show that neuron size is governed by a multiplicative process, which allows us to analytically derive the lognormal nature of the neuron length distribution. Our framework not only predicts the degree and strength distributions across each of the eight connectomes, but also yields a series of novel and empirically falsifiable relationships between different neuron characteristics. The resulting multiplicative network represents a novel architecture for network science, whose distinctive quantitative features bridge critical gaps between neural structure and function, with implications for brain dynamics, robustness, and synchronization. 
    more » « less
  4. The development of statistical methods to infer species phylogenies with reticulations (species networks) has led to many discoveries of gene flow between distinct species. These methods typically assume only incomplete lineage sorting and introgression. Given that phylogenetic networks can be arbitrarily complex, these methods might compensate for model misspecification by increasing the number of dimensions beyond the true value. Herein, we explore the effect of potential model misspecification, including the negligence of gene tree estimation error (GTEE) and assumption of a single substitution rate for all genomic loci, on the accuracy of phylogenetic network inference using both simulated and biological data. In particular, we assess the accuracy of estimated phylogenetic networks as well as test statistics for determining whether a network is the correct evolutionary history, as opposed to the simpler model that is a tree.We found that while GTEE negatively impacts the performance of test statistics to determine the “treeness” of the evolutionary history of a data set, running those tests on triplets of taxa and correcting for multiple-testing significantly ameliorates the problem. We also found that accounting for substitution rate heterogeneity improves the reliability of full Bayesian inference methods of phylogenetic networks, whereas summary statistic methods are robust to GTEE and rate heterogeneity, though currently require manual inspection to determine the network complexity. 
    more » « less
  5. Comparing connectomes can help explain how neural connectivity is related to genetics, disease, development, learning, and behavior. However, making statistical inferences about the significance and nature of differences between two networks is an open problem, and such analysis has not been extensively applied to nanoscale connectomes. Here, we investigate this problem via a case study on the bilateral symmetry of a larval Drosophila brain connectome. We translate notions of ‘bilateral symmetry’ to generative models of the network structure of the left and right hemispheres, allowing us to test and refine our understanding of symmetry. We find significant differences in connection probabilities both across the entire left and right networks and between specific cell types. By rescaling connection probabilities or removing certain edges based on weight, we also present adjusted definitions of bilateral symmetry exhibited by this connectome. This work shows how statistical inferences from networks can inform the study of connectomes, facilitating future comparisons of neural structures. 
    more » « less