Generative, ML-driven interactive systems have the potential to change how people interact with computers in creative processes - turning tools into co-creators. However, it is still unclear how we might achieve effective human-AI collaboration in open-ended task domains. There are several known challenges around communication in the interaction with ML-driven systems. An overlooked aspect in the design of co-creative systems is how users can be better supported in learning to collaborate with such systems. Here we reframe human-AI collaboration as a learning problem: Inspired by research on team learning, we hypothesize that similar learning strategies that apply to human-human teams might also increase the collaboration effectiveness and quality of humans working with co-creative generative systems. In this position paper, we aim to promote team learning as a lens for designing more effective co-creative human-AI collaboration and emphasize collaboration process quality as a goal for co-creative systems. Furthermore, we outline a preliminary schematic framework for embedding team learning support in co-creative AI systems. We conclude by proposing a research agenda and posing open questions for further study on supporting people in learning to collaborate with generative AI systems.
more »
« less
This content will become publicly available on April 25, 2026
Generative Ghosts: Anticipating Benefits and Risks of AI Afterlives
As AI systems quickly improve in both breadth and depth of performance, they lend themselves to creating increasingly powerful and realistic agents, including the possibility of agents modeled on specific people. We anticipate that within our lifetimes it may become common practice for people to create custom AI agents to interact with loved ones and/or the broader world after death; indeed, the past year has seen a boom in startups purporting to offer such services. We call these generative ghosts since such agents will be capable of generating novel content rather than merely parroting content produced by their creator while living. In this paper, we reflect on the history of technologies for AI afterlives, including current early attempts by individual enthusiasts and startup companies to create generative ghosts. We then introduce a novel design space detailing potential implementations of generative ghosts. We use this analytic framework to ground a discussion of the practical and ethical implications of various approaches to designing generative ghosts, including potential positive and negative impacts on individuals and society. Based on these considerations, we lay out a research agenda for the AI and HCI research communities to better understand the risk/benefit landscape of this novel technology to ultimately empower people who wish to create and interact with AI afterlives to do so in a beneficial manner.
more »
« less
- Award ID(s):
- 2048244
- PAR ID:
- 10623872
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400713941
- Page Range / eLocation ID:
- 1 to 14
- Subject(s) / Keyword(s):
- AI, AI agents, Generative AI, AI Afterlives, HCI, digital afterlife, digital legacy, post-mortem AI, post-mortem data management, end-of-life planning, death, griefbots
- Format(s):
- Medium: X
- Location:
- Yokohama Japan
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Generative Artificial Intelligence (AI) tools, including language models that can create novel content, have shown promise for science communication at scale. However, these tools may show inaccuracies and biases, particularly against marginalized populations. In this work, we examined the potential of GPT-4, a generative AI model, in creating content for climate science communication. We analyzed 100 messages generated by GPT-4 that included descriptors of intersecting identities, science communication mediums, locations, and climate justice issues. Our analyses revealed that community awareness and actions emerged as prominent themes in the generated messages, while systemic critiques of climate justice issues were not as present. We discuss how intersectional lenses can help researchers to examine the underlying assumptions of emerging technology before its integration into learning contexts.more » « less
-
Large Language Models (LLMs) now excel at generative skills and can create content at impeccable speeds. However, they are imperfect and still make various mistakes. In a Computer Science education context, as these models are widely recognized as “AI pair programmers,” it becomes increasingly important to train students on evaluating and debugging the LLM-generated code. In this work, we introduce HypoCompass, a novel system to facilitate deliberate practice on debugging, where human novices play the role of Teaching Assistants and help LLM-powered teachable agents debug code. We enable effective task delegation between students and LLMs in this learning-by-teaching environment: students focus on hypothesizing the cause of code errors, while adjacent skills like code completion are offloaded to LLM-agents. Our evaluations demonstrate that HypoCompass generates high-quality training materials (e.g., bugs and fixes), outperforming human counterparts fourfold in efficiency, and significantly improves student performance on debugging by 12% in the pre-to-post test.more » « less
-
Harmful textual content is pervasive on social media, poisoning online communities and negatively impacting participation. A common approach to this issue is developing detection models that rely on human annotations. However, the tasks required to build such models expose annotators to harmful and offensive content and may require significant time and cost to complete. Generative AI models have the potential to understand and detect harmful textual content. We used ChatGPT to investigate this potential and compared its performance with MTurker annotations for three frequently discussed concepts related to harmful textual content on social media: Hateful, Offensive, and Toxic (HOT). We designed five prompts to interact with ChatGPT and conducted four experiments eliciting HOT classifications. Our results show that ChatGPT can achieve an accuracy of approximately 80% when compared to MTurker annotations. Specifically, the model displays a more consistent classification for non-HOT comments than HOT comments compared to human annotations. Our findings also suggest that ChatGPT classifications align with the provided HOT definitions. However, ChatGPT classifies “hateful” and “offensive” as subsets of “toxic.” Moreover, the choice of prompts used to interact with ChatGPT impacts its performance. Based on these insights, our study provides several meaningful implications for employing ChatGPT to detect HOT content, particularly regarding the reliability and consistency of its performance, its understanding and reasoning of the HOT concept, and the impact of prompts on its performance. Overall, our study provides guidance on the potential of using generative AI models for moderating large volumes of user-generated textual content on social media.more » « less
-
We introduce ThreeDWorld (TDW), a platform for interactive multi-modal physical simulation. TDW enables simulation of high-fidelity sensory data and physical interactions between mobile agents and objects in rich 3D environments. Unique properties include: real-time near-photo-realistic image rendering; a library of objects and environments, and routines for their customization; generative procedures for efficiently building classes of new environments; high-fidelity audio rendering; realistic physical interactions for a variety of material types, including cloths, liquid, and deformable objects; customizable agents that embody AI agents; and support for human interactions with VR devices. TDW's API enables multiple agents to interact within a simulation and returns a range of sensor and physics data representing the state of the world. We present initial experiments enabled by TDW in emerging research directions in computer vision, machine learning, and cognitive science, including multi-modal physical scene understanding, physical dynamics predictions, multi-agent interactions, models that learn like a child, and attention studies in humans and neural networks.more » « less
An official website of the United States government
