skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 20, 2026

Title: Relative cell complexes in closure spaces
Abstract We give necessary and sufficient conditions for certain pushouts of topological spaces in the category of Čech’s closure spaces to agree with their pushout in the category of topological spaces. We prove that in these two categories, the constructions of cell complexes by a finite sequence of closed cell attachments, which attach arbitrarily many cells at a time, agree. Likewise, the constructions of CW complexes relative to a compactly generated weak Hausdorff space that attach only finitely many cells, also agree. On the other hand, we give examples showing that the constructions of finite-dimensional CW complexes, CW complexes of finite type, and relative CW complexes that attach only finitely many cells, need not agree.  more » « less
Award ID(s):
2324353
PAR ID:
10623995
Author(s) / Creator(s):
Publisher / Repository:
Canadian Mathematical Society
Date Published:
Journal Name:
Canadian Mathematical Bulletin
ISSN:
0008-4395
Page Range / eLocation ID:
1 to 9
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gasparovic, Ellen; Robins, Vanessa; Turner, Katharine (Ed.)
    While collapsibility of CW complexes dates back to the 1930s, collapsibility of directed Euclidean cubical complexes has not been well studied to date. The classical definition of collapsibility involves certain conditions on pairs of cells of the complex. The direction of the space can be taken into account by requiring that the past links of vertices remain homotopy equivalent after collapsing. We call this type of collapse a link-preserving directed collapse. In the undirected setting, pairs of cells are removed that create a deformation retract. In the directed setting, topological properties---in particular, properties of spaces of directed paths---are not always preserved. In this paper, we give computationally simple conditions for preserving the topology of past links. Furthermore, we give conditions for when link-preserving directed collapses preserve the contractability and connectedness of spaces of directed paths. Throughout, we provide illustrative examples. 
    more » « less
  2. Abstract A local ring R is regular if and only if every finitely generated R -module has finite projective dimension. Moreover, the residue field k is a test module: R is regular if and only if k has finite projective dimension. This characterization can be extended to the bounded derived category $$\mathsf {D}^{\mathsf f}(R)$$ , which contains only small objects if and only if R is regular. Recent results of Pollitz, completing work initiated by Dwyer–Greenlees–Iyengar, yield an analogous characterization for complete intersections: R is a complete intersection if and only if every object in $$\mathsf {D}^{\mathsf f}(R)$$ is proxy small. In this paper, we study a return to the world of R -modules, and search for finitely generated R -modules that are not proxy small whenever R is not a complete intersection. We give an algorithm to construct such modules in certain settings, including over equipresented rings and Stanley–Reisner rings. 
    more » « less
  3. One of the most famous results in graph theory is that of Kuratowski’s theorem, which states that a graph $$G$$ is non-planar if and only if it contains one of $$K_{3,3}$$ or $$K_5$$ as a topological minor. That is, if some subdivision of either $$K_{3,3}$$ or $$K_5$$ appears as a subgraph of $$G$$. In this case we say that the question of planarity is determined by a finite set of forbidden (topological) minors. A conjecture of Robertson, whose proof was recently announced by Liu and Thomas, characterizes the kinds of graph theoretic properties that can be determined by finitely many forbidden minors. In this extended abstract we will present a categorical version of Robertson’s conjecture, which we have proven in certain cases. We will then illustrate how this categorification, if proven in all cases, would imply many non-trivial statements in the topology of graph configuration spaces. 
    more » « less
  4. In this paper, we present a homotopical framework for studying invertible gapped phases of matter from the point of view of infinite spin lattice systems, using the framework of algebraic quantum mechanics. We define the notion of quantum state types. These are certain lax-monoidal functors from the category of finite-dimensional Hilbert spaces to the category of topological spaces. The universal example takes a finite-dimensional Hilbert space [Formula: see text] to the pure state space of the quasi-local algebra of the quantum spin system with Hilbert space [Formula: see text] at each site of a specified lattice. The lax-monoidal structure encodes the tensor product of states, which corresponds to stacking for quantum systems. We then explain how to formally extract parametrized phases of matter from quantum state types, and how they naturally give rise to [Formula: see text]-spaces for an operad we call the “multiplicative” linear isometry operad. We define the notion of invertible quantum state types and explain how the passage to phases for these is related to group completion. We also explain how invertible quantum state types give rise to loop-spectra. Our motivation is to provide a framework for constructing Kitaev’s loop-spectrum of bosonic invertible gapped phases of matter. Finally, as a first step toward understanding the homotopy types of the loop-spectra associated to invertible quantum state types, we prove that the pure state space of any UHF algebra is simply connected. 
    more » « less
  5. Abstract We show that over a perfect field, every non‐semisimple finite tensor category with finitely generated cohomology embeds into a larger such category where the tensor product property does not hold for support varieties. 
    more » « less