Fabricating freeform mirrors relies on accurate optical figuring processes capable of arbitrarily modifying low-spatial frequency height without creating higher-spatial frequency errors. We present a scalable process to accurately figure thin mirrors using stress generated by a focused ultrafast laser. We applied ultrafast laser stress figuring (ULSF) to four thin fused silica mirrors to correct them to 10-20 nm RMS over 28 Zernike terms, in 2-3 iterations, without significantly affecting higher-frequency errors. We measured the mirrors over a month and found that dielectric-coated mirrors were stable but stability of aluminum-coated mirrors was inconclusive. The accuracy and throughput for ULSF is on par with existing deterministic figuring processes, yet ULSF doesn’t significantly affect mid-spatial frequency errors, can be applied after mirror coating, and can scale to higher throughput using mature laser processing technologies. ULSF offers new potential to rapidly and accurately shape freeform mirrors.
more »
« less
This content will become publicly available on August 1, 2026
Stability of Ultrafast Laser-Induced Stress in Fused Silica and Ultra-Low Expansion Glass
Stress fields imparted with an ultrafast laser can correct low spatial frequency surface figure error of mirrors through ultrafast laser stress figuring (ULSF): the formation of nanograting structures within the bulk substrate generates localized stress, creating bending moments that equilibrize via wafer deformation. For ULSF to be used as an optical figuring process, the ultrafast laser generated stress must be effectively permanent or risk unwanted figure drift. Two isochronal annealing experiments were performed to measure ultrafast laser-generated stress stability in fused silica and Corning ultra-low expansion (ULE) wafers. The first experiment tracked changes to induced astigmatism up to 1000 °C on 25.4 mm-diameter wafers. Only small changes were measured after each thermal cycle up to 500 °C for both materials, but significant changes were observed at higher temperatures. The second experiment tracked stress changes in fused silica and ULE up to 500 °C but with 4 to 16× higher signal-to-noise ratio. Change in trefoil on 100 mm-diameter wafers was measured, and the induced stress in fused silica and ULE was found to be stable after thermal cycling up to 300 °C and 200 °C, respectively, with larger changes at higher temperatures.
more »
« less
- Award ID(s):
- 2121713
- PAR ID:
- 10624898
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Photonics
- ISSN:
- 2304-6732
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Although stress is a critical factor in many ultrafast laser-based fabrication techniques, its relationship to different laser operating parameters remains poorly understood. Here, we investigate the stress landscape within fused silica generated by ultrafast laser pulses, with repetition rates of 100???900?kHzand pulse energies of 200???4000?nJ, by measuring all three components of the stress-induced curvature change of fused silica plates. We find that for all repetition rates, there is an inflection in the stress when the average laser power is about 60?mW, and this inflection is not correlated with the morphological transition from nanogratings to melting, as observed from cross-section imaging. The equibiaxial and antibiaxial components of stress exhibit a characteristic average ratio of about ?1.65 up until the visually observed onset of melting within the modifications, which occurs when the average laser power is about 423?mW. We conclude that nanogratings produce a characteristic stress state, with a maximum magnitude that is reached at lower pulse energy than nanograting erasure. Beyond nanograting erasure, the stress state is more variable and distinct from the nanograting-induced stress state.more » « less
-
Abstract Residual stress profiles in silica glass were measured after water diffusion treatment under 47.33 kPa (355 Torr) water vapor at 350°C and 650°C. Earlier, it was found that water solubility in silica glass exhibited peculiar time dependence: Solubility increased with time exceeding the normal water solubility expected from higher temperatures. Then, the water solubility decreased with time. It was hypothesized that the stress induced by water diffusion and its subsequent relaxation is responsible for the phenomenon. Residual surface stress generation in silica glass was found to correlate closely with surface hydroxyl concentration, systematically increasing until eventual surface stress relaxation results in stress decrease for treatments beyond 265 hours at 650°C. This observation validates previous theories of time dependent diffusivity in silica glass.more » « less
-
Bauxite and silica particles are candidate materials for solar thermal energy storage at high temperatures. The temperature-dependent emittance of packed beds with bauxite and silica particles was measured using a newly upgraded emissometer at wavelengths 2 μm ≤ λ ≤ 16 μm and temperatures up to ~730 K. The room-temperature emittance was obtained from the measured directional-hemispherical reflectance. A fused silica disc was used to test the emissometer by comparing the measured spectral emittance with the calculated emittance from a fitted Lorentz oscillator model. For the polycrystalline silica particles and the fused silica disc, the measured emittance increases with temperature in the mid-infrared region. The underlying mechanism is interpreted as the temperature-dependent damping coefficient in the Lorentz oscillator model. Two types of bauxite particles with different compositions and sizes were investigated. For λ > 10 μm, the measured emittance at elevated temperatures is higher than that at room temperature. In the region 2 μm < λ < 6 μm, the temperature dependence varies for different types of particles. The total emittance of bauxite particle beds was calculated by spectral integration using Planck’s distribution at the prescribed temperature. The calculated total emittance is between 0.89 and 0.96, but it does not change monotonically with temperature.more » « less
-
null (Ed.)Abstract Disorder arising from random locations of charged donors and acceptors introduces localization and diffusive motion that can lead to constructive electron interference and positive magnetoconductivity. At very low temperatures, 3D theory predicts that the magnetoconductivity is independent of temperature or material properties, as verified for many combinations of thin-films and substrates. Here, we find that this prediction is apparently violated if the film thickness d is less than about 300 nm. To investigate the origin of this apparent violation, the magnetoconductivity was measured at temperatures T = 15 – 150 K in ten, Sn-doped In 2 O 3 films with d = 13 – 292 nm, grown by pulsed laser deposition on fused silica. We observe a very strong thickness dependence which we explain by introducing a theory that postulates a second source of disorder, namely, non-uniform interface-induced defects whose number decreases exponentially with the interface distance. This theory obeys the 3D limit for the thickest samples and yields a natural figure of merit for interface disorder. It can be applied to any degenerate semiconductor film on any semi-insulating substrate.more » « less
An official website of the United States government
