skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exact minimax optimality of spectral methods in phase synchronization and orthogonal group synchronization
Award ID(s):
2112988
PAR ID:
10624901
Author(s) / Creator(s):
Publisher / Repository:
Institute of Mathematical Statistics
Date Published:
Journal Name:
The Annals of Statistics
Volume:
52
Issue:
5
ISSN:
0090-5364
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We study the statistical estimation problem of orthogonal group synchronization and rotation group synchronization. The model is $$Y_{ij} = Z_i^* Z_j^{*T} + \sigma W_{ij}\in{\mathbb{R}}^{d\times d}$$ where $$W_{ij}$$ is a Gaussian random matrix and $$Z_i^*$$ is either an orthogonal matrix or a rotation matrix, and each $$Y_{ij}$$ is observed independently with probability $$p$$. We analyze an iterative polar decomposition algorithm for the estimation of $Z^*$ and show it has an error of $$(1+o(1))\frac{\sigma ^2 d(d-1)}{2np}$$ when initialized by spectral methods. A matching minimax lower bound is further established that leads to the optimality of the proposed algorithm as it achieves the exact minimax risk. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. The algorithmic advancement of synchronizing maps is important in order to solve a wide range of practice problems with possible large-scale dataset. In this paper, we provide theoretical justifications for spectral techniques for the map synchronization problem, i.e., it takes as input a collection of objects and noisy maps estimated between pairs of objects, and outputs clean maps between all pairs of objects. We show that a simple normalized spectral method that projects the blocks of the top eigenvectors of a data matrix to the map space leads to surprisingly good results. As the noise is modelled naturally as random permutation matrix, this algorithm NormSpecSync leads to competing theoretical guarantees as state-of-the-art convex optimization techniques, yet it is much more efficient. We demonstrate the usefulness of our algorithm in a couple of applications, where it is optimal in both complexity and exactness among existing methods. 
    more » « less