skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 21, 2026

Title: Design and Characterization of Low‐Threshold InP Nanowire Photonic Crystal Surface‐Emitting Lasers
This study examines the lasing performance of optically pumped wurtzite‐phase InP nanowire (NW) photonic crystal surface‐emitting lasers (PCSELs) with the goal of optimizing the cavity design for low‐threshold lasing. By varying the photonic crystal lattice constant and NW diameter, this study systematically investigates the threshold power and the threshold gain. Using finite‐difference time‐domain simulations and gain spectra modeling, this study finds that the lowest pump threshold occurs when the cavity resonance energy is slightly above the spontaneous emission maximum energy due to high differential gain. Furthermore, PCSEL structures with an apothem‐to‐pitch ratio of ≈0.15 are advantageous because they provide increased confinement factors, resulting in the lowest lasing threshold and high laser output. This study paves the path toward low‐threshold NW PCSEL designs for photonic integrated circuits.  more » « less
Award ID(s):
2422077 2004768
PAR ID:
10624916
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley-VCH GmbH
Date Published:
Journal Name:
Advanced Photonics Research
ISSN:
2699-9293
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We demonstrate a low power thermally induced optical bistability at telecom wavelengths and room temperature using a nanobeam photonic crystal cavity embedded with an ensemble of quantum dots. The nanobeam photonic crystal cavity is transfer-printed onto the edge of a carrier chip for thermal isolation of the cavity with an efficient optical coupling between the nanobeam waveguide and optical setup. Reflectivity measurements performed with a tunable laser reveal the thermo-optic nature of the nonlinearity. A bistability power threshold as low as 23 μW and an on/off response contrast of 6.02 dB are achieved from a cavity with a moderately low quality factor of 2830. Our device provides optical bistability at power levels an order of magnitude lower than previous quantum-dot-based devices. 
    more » « less
  2. Abstract 2D photonic crystal (PhC) lasing from an InP nanowire array still attached to the InP substrate is demonstrated for the first time. The undoped wurtzite InP nanowire array is grown by selective area epitaxy and coated with a 10 nm thick Al2O3film to suppress atmospheric oxidation and band‐bending effects. The PhC array displays optically pumped lasing at room temperature at a pulsed threshold fluence of 14 µJ cm−2. At liquid nitrogen temperature, the array shows lasing under continuous wave excitation at a threshold intensity of 500 W cm−2. The output power of the single mode laser line reaches values of 470 µW. Rate equation calculations indicate a quality factor ofQ ≈ 1000. Investigations near threshold reveal that lasing starts from isolated islands within the pumped region before coherently merging into a single homogeneous area with increasing excitation power. This field emits a lasing mode with an average off‐normal angle of ≈6°. Single mode lasing with the nanoarray still attached to the InP substrate opens new design opportunities for electrically pumped PhC laser light sources. 
    more » « less
  3. Abstract Recent studies on exceptional points (EPs) in non-Hermitian optical systems have revealed unique traits, including unidirectional invisibility, chiral mode switching and laser self-termination. In systems featuring gain/loss components, EPs are commonly accessed below the lasing threshold, i.e., in the linear regime. In this work, we experimentally demonstrate that EP singularities in coupled semiconductor nanolasers can be accessed above the lasing threshold, where they become branch points of a nonlinear dynamical system. Contrary to the common belief that unavoidable cavity detuning impedes the formation of EPs, here we demonstrate that such detuning is necessary for compensating the carrier-induced frequency shift, hence restoring the EP. Furthermore, we find that the pump imbalance at lasing EPs varies with the total pump power, enabling their continuous tracking. This work uncovers the unstable nature of EPs above laser threshold in coupled semiconductor lasers, offering promising opportunities for the realization of self-pulsing nanolaser devices and frequency combs. 
    more » « less
  4. A green‐emitting perovskite first‐order distributed feedback (DFB) laser based on the methylammonium lead bromide (MAPbBr3) with high stability is demonstrated for the first time. The laser achieves stable lasing at 550 nm with a full width at half maximum of 0.4 nm. Low lasing threshold of 60 μJ cm−2under nanosecond pulsed excitation and 3.1 μJ cm−2under femtosecond pulsed excitation is observed, showing a much lower lasing threshold compared with the second‐order DFB cavities, which are fabricated on the same substrate. By optimizing the antisolvent treatment and encapsulating with poly(methyl methacrylate), the laser lifetime, resistance to moisture, lasing threshold, and intensity are significantly improved. The lasers are fabricated with a complementary metal‐oxide‐semiconductor‐compatible process, thus offer promising potential for the integrated photonic devices. 
    more » « less
  5. Random lasing occurs as the result of a coherent optical feedback from multiple scattering centers. Here, we demonstrate that plasmonic gold nanostars are efficient light scattering centers, exhibiting strong field enhancement at their nanotips, which assists a very narrow bandwidth and highly amplified coherent random lasing with a low lasing threshold. First, by embedding plasmonic gold nanostars in a rhodamine 6G dye gain medium, we observe a series of very narrow random lasing peaks with full-width at half-maximum ∼ 0.8 nm. In contrast, free rhodamine 6G dye molecules exhibit only a single amplified spontaneous emission peak with a broader linewidth of 6 nm. The lasing threshold for the dye with gold nanostars is two times lower than that for a free dye. Furthermore, by coating the tip of a single-mode optical fiber with gold nanostars, we demonstrate a collection of random lasing signal through the fiber that can be easily guided and analyzed. Time-resolved measurements show a significant increase in the emission rate above the lasing threshold, indicating a stimulated emission process. Our study provides a method for generating random lasing in the nanoscale with low threshold values that can be easily collected and guided, which promise a range of potential applications in remote sensing, information processing, and on-chip coherent light sources. 
    more » « less