Abstract Objective. Spontaneous fluctuations of cerebral hemodynamics measured by functional magnetic resonance imaging (fMRI) are widely used to study the network organization of the brain. The temporal correlations among the ultra-slow, <0.1 Hz fluctuations across the brain regions are interpreted as functional connectivity maps and used for diagnostics of neurological disorders. However, despite the interest narrowed in the ultra-slow fluctuations, hemodynamic activity that exists beyond the ultra-slow frequency range could contribute to the functional connectivity, which remains unclear.Approach. In the present study, we have measured the brain-wide hemodynamics in the human participants with functional near-infrared spectroscopy (fNIRS) in a whole-head, cap-based and high-density montage at a sampling rate of 6.25 Hz. In addition, we have acquired resting state fMRI scans in the same group of participants for cross-modal evaluation of the connectivity maps. Then fNIRS data were deliberately down-sampled to a typical fMRI sampling rate of ∼0.5 Hz and the resulted differential connectivity maps were subject to a k-means clustering.Main results. Our diffuse optical topographical analysis of fNIRS data have revealed a default mode network (DMN) in the spontaneous deoxygenated and oxygenated hemoglobin changes, which remarkably resemble the same fMRI network derived from participants. Moreover, we have shown that the aliased activities in the down-sampled optical signals have altered the connectivity patterns, resulting in a network organization of aliased functional connectivity in the cerebral hemodynamics.Significance.The results have for the first time demonstrated that fNIRS as a broadly accessible modality can image the resting-state functional connectivity in the posterior midline, prefrontal and parietal structures of the DMN in the human brain, in a consistent pattern with fMRI. Further empowered by the fast sampling rate of fNIRS, our findings suggest the presence of aliased connectivity in the current understanding of the human brain organization.
more »
« less
This content will become publicly available on March 1, 2026
Forming Connections: Functional Brain Connectivity is Associated With Executive Functioning Abilities in Early Childhood
Functional magnetic resonance imaging (fMRI) studies with adults provide evidence that functional brain networks, including the default mode network and frontoparietal network, underlie executive functioning (EF). However, given the challenges of using fMRI with infants and young children, little work has assessed the developmental trajectories of these networks or their associations with EF at key developmental stages. More recently, functional near‐infrared spectroscopy (fNIRS) has emerged as a promising neuroimaging tool which can provide information on cortical functional networks and can be more easily implemented with young children. Children (N= 207;n= 116 male;n= 167 White) had fNIRS data recorded at infancy, 3, 5, and 7 years of age while watching a 2‐min nonsocial video. At 3, 5, and 7 years, children completed behavioral assessments and parents completed questionnaires to assess child EF abilities. Results showed that, although early functional brain network connectivity was not associated with later functional brain connectivity, EF was concurrently and longitudinally associated with functional connectivity levels in both networks. Overall, these results inform the understanding of early emerging neural underpinnings of regulatory abilities and point to considerable change in the composition of functional brain networks and a conservation of function across development.
more »
« less
- Award ID(s):
- 2122961
- PAR ID:
- 10625034
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Developmental Science
- Volume:
- 28
- Issue:
- 2
- ISSN:
- 1363-755X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Variability in functional brain network connectivity has been linked to individual differences in cognitive, affective, and behavioral traits in adults. However, little is known about the developmental origins of such brain-behavior correlations. The current study examined functional brain network connectivity and its link to behavioral temperament in typically developing newborn and 1-month-old infants ( M [age] = 25 days; N = 75) using functional near-infrared spectroscopy (fNIRS). Specifically, we measured long-range connectivity between cortical regions approximating fronto-parietal, default mode, and homologous-interhemispheric networks. Our results show that connectivity in these functional brain networks varies across infants and maps onto individual differences in behavioral temperament. Specifically, connectivity in the fronto-parietal network was positively associated with regulation and orienting behaviors, whereas connectivity in the default mode network showed the opposite effect on these behaviors. Our analysis also revealed a significant positive association between the homologous-interhemispheric network and infants' negative affect. The current results suggest that variability in long-range intra-hemispheric and cross-hemispheric functional connectivity between frontal, parietal, and temporal cortex is associated with individual differences in affect and behavior. These findings shed new light on the brain origins of individual differences in early-emerging behavioral traits and thus represent a viable novel approach for investigating developmental trajectories in typical and atypical neurodevelopment.more » « less
-
Abstract Sleep is critical to a variety of cognitive functions and insufficient sleep can have negative consequences for mood and behavior across the lifespan. An important open question is how sleep duration is related to functional brain organization which may in turn impact cognition. To characterize the functional brain networks related to sleep across youth and young adulthood, we analyzed data from the publicly available Human Connectome Project (HCP) dataset, which includesn‐back task‐based and resting‐state fMRI data from adults aged 22–35 years (taskn = 896; restn = 898). We applied connectome‐based predictive modeling (CPM) to predict participants' mean sleep duration from their functional connectivity patterns. Models trained and tested using 10‐fold cross‐validation predicted self‐reported average sleep duration for the past month fromn‐back task and resting‐state connectivity patterns. We replicated this finding in data from the 2‐year follow‐up study session of the Adolescent Brain Cognitive Development (ABCD) Study, which also includesn‐back task and resting‐state fMRI for adolescents aged 11–12 years (taskn = 786; restn = 1274) as well as Fitbit data reflecting average sleep duration per night over an average duration of 23.97 days. CPMs trained and tested with 10‐fold cross‐validation again predicted sleep duration fromn‐back task and resting‐state functional connectivity patterns. Furthermore, demonstrating that predictive models are robust across independent datasets, CPMs trained on rest data from the HCP sample successfully generalized to predict sleep duration in the ABCD Study sample and vice versa. Thus, common resting‐state functional brain connectivity patterns reflect sleep duration in youth and young adults.more » « less
-
null (Ed.)Abstract Creative cognition has been consistently associated with functional connectivity between frontoparietal control and default networks. However, recent research identified distinct connectivity dynamics for subnetworks within the larger frontoparietal system—one subnetwork (FPCNa) shows positive coupling with the default network and another subnetwork (FPCNb) shows negative default coupling—raising questions about how these networks interact during creative cognition. Here we examine frontoparietal subnetwork functional connectivity in a large sample of participants (n = 171) who completed a divergent creative thinking task and a resting-state scan during fMRI. We replicated recent findings on functional connectivity of frontoparietal subnetworks at rest: FPCNa positively correlated with the default network and FPCNb negatively correlated with the default network. Critically, we found that divergent thinking evoked functional connectivity between both frontoparietal subnetworks and the default network, but in different ways. Using community detection, we found that FPCNa regions showed greater coassignment to a default network community. However, FPCNb showed overall stronger functional connectivity with the default network—reflecting a reversal of negative connectivity at rest—and the strength of FPCNb-default network connectivity correlated with individual creative ability. These findings provide novel evidence of a behavioral benefit to the cooperation of typically anticorrelated brain networks.more » « less
-
Despite a recent surge in research examining parent–child neural similarity using fMRI, there remains a need for further investigation into how such similarity may play a role in children's emotional adjustment. Moreover, no prior studies explored the potential contextual factors that may moderate the link between parent–child neural similarity and children's developmental outcomes. In this study, 32 parent–youth dyads (parents:Mage= 43.53 years, 72% female; children:Mage= 11.69 years, 41% female) watched an emotion-evoking animated film while being scanned using fMRI. We first quantified how similarly emotion network interacts with other brain regions in responding to the emotion-evoking film between parents and their children. We then examined how such parent–child neural similarity is associated with children's emotional adjustment, with attention to the moderating role of family cohesion. Results revealed that higher parent–child similarity in functional connectivity pattern during movie viewing was associated with better emotional adjustment, including less negative affect, lower anxiety, and greater ego resilience in youth. Moreover, such associations were significant only among families with higher cohesion, but not among families with lower cohesion. The findings advance our understanding of the neural mechanisms underlying how children thrive by being in sync and attuned with their parents, and provide novel empirical evidence that the effects of parent–child concordance at the neural level on children's development are contextually dependent. SIGNIFICANCE STATEMENTWhat neural processes underlie the attunement between children and their parents that helps children thrive? Using a naturalistic movie-watching fMRI paradigm, we find that greater parent–child similarity in how emotion network interacts with other brain regions during movie viewing is associated with youth's better emotional adjustment including less negative affect, lower anxiety, and greater ego resilience. Interestingly, these associations are only significant among families with higher cohesion, but not among those with lower cohesion. Our findings provide novel evidence that parent–child shared neural processes to emotional situations can confer benefits to children, and underscore the importance of considering specific family contexts in which parent–child neural similarity may be beneficial or detrimental to children's development, highlighting a crucial direction for future research.more » « less
An official website of the United States government
