skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: The robustness of inferred envelope and core rotation rates of red giant stars from asteroseismology
Context.Rotation is an important phenomenon influencing stellar structure and evolution, however, it has not been adequately modelled thus far. Therefore, accurate estimates of internal rotation rates are valuable for constraining stellar evolution models. Aims.We aim to assess the accuracy of asteroseismic estimates of internal rotation rates and how they depend on the fundamental stellar parameters. Methods.We applied the recently developed extended-multiplicative optimally localised averages (eMOLA) inversion method, to infer localised estimates of internal rotation rates of synthetic observations of red giants. We searched for suitable reference stellar models, following a grid-based approach, and we assessed the robustness of the resulting inferences with respect to the choice of reference model. Results.We find that matching the mixed-mode pattern between the observation and the reference model is an important criterion for selecting suitable reference models. We propose (i) selecting a set of reference models based on the correlation between the observed rotational splittings and the mode-trapping parameter; (ii) computing the rotation rates for all these models; and (iii) using the average value obtained across the whole set as the estimate of the internal rotation rates. We find that the effect of a near surface perturbation in the synthetic observations on the rotation rates estimated based on the correlation between the observed rotational splittings and the mode-trapping parameter is negligible. Conclusions.We conclude that when using an ensemble of reference models that are selected by matching the mixed-mode pattern, the input rotation rates can be recovered across a range of fundamental stellar parameters such as mass, mixing-length parameter, and composition. Further, red giant rotation rates determined in this way are also independent of any near-surface perturbation of the stellar structure.  more » « less
Award ID(s):
2205026
PAR ID:
10625203
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
EDP Sciences
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
693
ISSN:
0004-6361
Page Range / eLocation ID:
A274
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Some physical processes that occur during a star's main-sequence evolution also affect its post-main-sequence evolution. It is well known that stars with masses above approximately 1.1Mhave well-mixed convective cores on the main sequence; however, the structure of the star in the neighborhood of the convective core regions is currently underconstrained. We use asteroseismology to study the properties of the stellar core, in particular convective boundary mixing through convective overshoot, in such intermediate-mass stars. These core regions are poorly constrained by the acoustic (p) mode oscillations observed for cool main-sequence stars. Consequently, we seek fossil signatures of main-sequence core properties during the subgiant and early first-ascent red giant phases of evolution. During these stages of stellar evolution, modes of mixed character that sample the deep interior can be observed. These modes sample the parts of the stars that are affected by the main-sequence structure of these regions. We model the global and near-core properties of 62 subgiant and early first-ascent red giant branch stars observed by theKepler, K2, and TESS space missions. We find that the effective overshoot parameter,αov,eff, increases fromM= 1.0MtoM= 1.2Mbefore flattening out, although we note that the relationship betweenαov,effand mass will depend on the incorporated modeling choices of internal physics and nuclear reaction network. We also situate these results within existing studies of main-sequence convective core boundaries. 
    more » « less
  2. Abstract We used high-resolution spectra acquired with the Magellan Telescope to measure radial and rotational velocities of approximately 200 stars in the Galactic globular cluster NGC 3201. The surveyed sample includes blue straggler stars (BSSs) and reference stars in different evolutionary stages (main-sequence turnoff, subgiant, red giant, and asymptotic giant branches). The average radial velocity value (〈Vr〉 = 494.5 ± 0.5 km s−1) confirms a large systemic velocity for this cluster and was used to distinguish 33 residual field interlopers. The final sample of member stars has 67 BSSs and 114 reference stars. Similarly to what is found in other clusters, the totality of the reference stars has negligible rotation (< 20 km s−1), while the BSS rotational velocity distribution shows a long tail extending up to ∼200 km s−1, with 19 BSSs (out of 67) spinning faster than 40 km s−1. This sets the percentage of fast-rotating BSSs to ∼28%. Such a percentage is roughly comparable to that measured in other loose systems (ωCentauri, M4, and M55) and significantly larger than that measured in high-density clusters (as 47 Tucanae, NGC 6397, NGC 6752, and M30). This evidence supports a scenario where recent BSS formation (mainly from the evolution of binary systems) is occurring in low-density environments. We also find that the BSS rotational velocity tends to decrease for decreasing luminosity and surface temperature, similarly to what is observed in main-sequence stars. Hence, further investigations are needed to understand the impact of BSS internal structure on the observed rotational velocities. 
    more » « less
  3. Abstract Rotational evolution of stellar radiative zones is an old puzzle. We argue that angular momentum transport by turbulent processes induced by differential rotation is insufficient, and propose that a key role is played by “magnetic webs.” We define magnetic webs as stable magnetic configurations that enforce corotation of their coupled mass shells, and discuss their resistance to differential torques that occur in stars. Magnetic webs are naturally expected in parts of radiative zones that were formerly convective, retaining memory of extinguished dynamos. For instance, red giants with moderate massesM ≳ 1.3Mlikely contain a magnetic web deposited on the main sequence during the retreat of the central convective zone. The web couples the helium core to the hydrogen envelope of the evolving red giant and thus reduces spin-up of the contracting core. The magnetic field and the resulting slower rotation of the core are both consistent with asteroseismic observations, as we illustrate with a stellar evolution model with mass 1.6M. Evolved massive stars host more complicated patterns of convective zones that may leave behind many webs, transporting angular momentum toward the surface. Efficient web formation likely results in most massive stars dying with magnetized and slowly rotating cores. 
    more » « less
  4. Most previous efforts to calibrate how rotation and magnetic activity depend on stellar age and mass have relied on observations of clusters, where isochrones from stellar evolution models are used to determine the properties of the ensemble. Asteroseismology employs similar models to measure the properties of an individual star by matching its normal modes of oscillation, yielding the stellar age and mass with high precision. We use 27 days of photometry from the {\it Transiting Exoplanet Survey Satellite} (TESS) to characterize solar-like oscillations in the G8 subgiant of the 94~Aqr triple system. The resulting stellar properties, when combined with a reanalysis of 35 years of activity measurements from the Mount Wilson HK project, allow us to probe the evolution of rotation and magnetic activity in the system. The asteroseismic age of the subgiant agrees with a stellar isochrone fit, but the rotation period is much shorter than expected from standard models of angular momentum evolution. We conclude that weakened magnetic braking may be needed to reproduce the stellar properties, and that evolved subgiants in the hydrogen shell-burning phase can reinvigorate large-scale dynamo action and briefly sustain magnetic activity cycles before ascending the red giant branch. 
    more » « less
  5. null (Ed.)
    Contact. The large quantity of high-quality asteroseismic data that have been obtained from space-based photometric missions and the accuracy of the resulting frequencies motivate a careful consideration of the accuracy of computed oscillation frequencies of stellar models, when applied as diagnostics of the model properties. Aims. Based on models of red-giant stars that have been independently calculated using different stellar evolution codes, we investigate the extent to which the differences in the model calculation affect the model oscillation frequencies and other asteroseismic diagnostics. Methods. For each of the models, which cover four different masses and different evolution stages on the red-giant branch, we computed full sets of low-degree oscillation frequencies using a single pulsation code and, from these frequencies, typical asteroseismic diagnostics. In addition, we carried out preliminary analyses to relate differences in the oscillation properties to the corresponding model differences. Results. In general, the differences in asteroseismic properties between the different models greatly exceed the observational precision of these properties. This is particularly true for the nonradial modes whose mixed acoustic and gravity-wave character makes them sensitive to the structure of the deep stellar interior and, hence, to details of their evolution. In some cases, identifying these differences led to improvements in the final models presented here and in Paper I; here we illustrate particular examples of this. Conclusions. Further improvements in stellar modelling are required in order fully to utilise the observational accuracy to probe intrinsic limitations in the modelling and improve our understanding of stellar internal physics. However, our analysis of the frequency differences and their relation to stellar internal properties provides a striking illustration of the potential, in particular, of the mixed modes of red-giant stars for the diagnostics of stellar interiors. 
    more » « less