skip to main content


Title: The Aarhus red giants challenge: II. Stellar oscillations in the red giant branch phase
Contact. The large quantity of high-quality asteroseismic data that have been obtained from space-based photometric missions and the accuracy of the resulting frequencies motivate a careful consideration of the accuracy of computed oscillation frequencies of stellar models, when applied as diagnostics of the model properties. Aims. Based on models of red-giant stars that have been independently calculated using different stellar evolution codes, we investigate the extent to which the differences in the model calculation affect the model oscillation frequencies and other asteroseismic diagnostics. Methods. For each of the models, which cover four different masses and different evolution stages on the red-giant branch, we computed full sets of low-degree oscillation frequencies using a single pulsation code and, from these frequencies, typical asteroseismic diagnostics. In addition, we carried out preliminary analyses to relate differences in the oscillation properties to the corresponding model differences. Results. In general, the differences in asteroseismic properties between the different models greatly exceed the observational precision of these properties. This is particularly true for the nonradial modes whose mixed acoustic and gravity-wave character makes them sensitive to the structure of the deep stellar interior and, hence, to details of their evolution. In some cases, identifying these differences led to improvements in the final models presented here and in Paper I; here we illustrate particular examples of this. Conclusions. Further improvements in stellar modelling are required in order fully to utilise the observational accuracy to probe intrinsic limitations in the modelling and improve our understanding of stellar internal physics. However, our analysis of the frequency differences and their relation to stellar internal properties provides a striking illustration of the potential, in particular, of the mixed modes of red-giant stars for the diagnostics of stellar interiors.  more » « less
Award ID(s):
1716436
NSF-PAR ID:
10298052
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; « less
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
635
ISSN:
0004-6361
Page Range / eLocation ID:
A165
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    While solar-like oscillations in red giants have been observed at massive scales by the Kepler mission, few features of these oscillation mode frequencies, other than their global properties, have been exploited for stellar characterization. The signatures of acoustic glitches in mode frequencies have been used for studying main-sequence stars, but the validity of applying such techniques to evolved red giants, particularly pertaining to the inclusion of nonradial modes, has been less well examined. Making use of new theoretical developments, we characterize glitches using theπmodes associated with red giant stellar models, and use our procedure to examine for the first time how the properties of the Heiiacoustic glitch—specifically its amplitude and associated acoustic depth—vary over the course of evolution up the red giant branch, and with respect to other fundamental stellar properties. We find that the acoustic depths of these glitches, in conjunction with other spectroscopic information, discriminate between red giants in the first-ascent and core-helium-burning phases. We critically reexamine previous attempts to constrain acoustic glitches from nonradial (in particular dipole) modes in red giants. Finally, we apply our fitting procedure to Kepler data, to evaluate its robustness to noise and other observational systematics.

     
    more » « less
  2. Context. The TESS satellite was launched in 2018 to perform high-precision photometry from space over almost the whole sky in a search for exoplanets orbiting bright stars. This instrument has opened new opportunities to study variable hot subdwarfs, white dwarfs, and related compact objects. Targets of interest include white dwarf and hot subdwarf pulsators, both carrying high potential for asteroseismology. Aims. We present the discovery and detailed asteroseismic analysis of a new g -mode hot B subdwarf (sdB) pulsator, EC 21494−7018 (TIC 278659026), monitored in TESS first sector using 120-s cadence. Methods. The TESS light curve was analyzed with standard prewhitening techniques, followed by forward modeling using our latest generation of sdB models developed for asteroseismic investigations. By simultaneously best-matching all the observed frequencies with those computed from models, we identified the pulsation modes detected and, more importantly, we determined the global parameters and structural configuration of the star. Results. The light curve analysis reveals that EC 21494−7018 is a sdB pulsator counting up to 20 frequencies associated with independent g -modes. The seismic analysis singles out an optimal model solution in full agreement with independent measurements provided by spectroscopy (atmospheric parameters derived from model atmospheres) and astrometry (distance evaluated from Gaia DR2 trigonometric parallax). Several key parameters of the star are derived. Its mass (0.391 ± 0.009  M ⊙ ) is significantly lower than the typical mass of sdB stars and suggests that its progenitor has not undergone the He-core flash; therefore this progenitor could originate from a massive (≳2  M ⊙ ) red giant, which is an alternative channel for the formation of sdBs. Other derived parameters include the H-rich envelope mass (0.0037 ± 0.0010  M ⊙ ), radius (0.1694 ± 0.0081  R ⊙ ), and luminosity (8.2 ± 1.1  L ⊙ ). The optimal model fit has a double-layered He+H composition profile, which we interpret as an incomplete but ongoing process of gravitational settling of helium at the bottom of a thick H-rich envelope. Moreover, the derived properties of the core indicate that EC 21494−7018 has burnt ∼43% (in mass) of its central helium and possesses a relatively large mixed core ( M core  = 0.198 ± 0.010  M ⊙ ), in line with trends already uncovered from other g-mode sdB pulsators analyzed with asteroseismology. Finally, we obtain for the first time an estimate of the amount of oxygen (in mass; X (O) core = 0.16 +0.13 −0.05 ) produced at this stage of evolution by an helium-burning core. This result, along with the core-size estimate, is an interesting constraint that may help to narrow down the still uncertain 12 C( α ,  γ ) 16 O nuclear reaction rate. 
    more » « less
  3. Context. With the advent of space-based asteroseismology, determining accurate properties of red-giant stars using their observed oscillations has become the focus of many investigations due to their implications in a variety of fields in astrophysics. Stellar models are fundamental in predicting quantities such as stellar age, and their reliability critically depends on the numerical implementation of the physics at play in this evolutionary phase. Aims. We introduce the Aarhus red giants challenge, a series of detailed comparisons between widely used stellar evolution and oscillation codes that aim to establish the minimum level of uncertainties in properties of red giants arising solely from numerical implementations. We present the first set of results focusing on stellar evolution tracks and structures in the red-giant-branch (RGB) phase. Methods. Using nine state-of-the-art stellar evolution codes, we defined a set of input physics and physical constants for our calculations and calibrated the convective efficiency to a specific point on the main sequence. We produced evolutionary tracks and stellar structure models at a fixed radius along the red-giant branch for masses of 1.0  M ⊙ , 1.5  M ⊙ , 2.0  M ⊙ , and 2.5  M ⊙ , and compared the predicted stellar properties. Results. Once models have been calibrated on the main sequence, we find a residual spread in the predicted effective temperatures across all codes of ∼20 K at solar radius and ∼30–40 K in the RGB regardless of the considered stellar mass. The predicted ages show variations of 2–5% (increasing with stellar mass), which we attribute to differences in the numerical implementation of energy generation. The luminosity of the RGB-bump shows a spread of about 10% for the considered codes, which translates into magnitude differences of ∼0.1 mag in the optical V -band. We also compare the predicted [C/N] abundance ratio and find a spread of 0.1 dex or more for all considered masses. Conclusions. Our comparisons show that differences at the level of a few percent still remain in evolutionary calculations of red giants branch stars despite the use of the same input physics. These are mostly due to differences in the energy generation routines and interpolation across opacities, and they call for further investigation on these matters in the context of using properties of red giants as benchmarks for astrophysical studies. 
    more » « less
  4. Abstract

    Some physical processes that occur during a star's main-sequence evolution also affect its post-main-sequence evolution. It is well known that stars with masses above approximately 1.1Mhave well-mixed convective cores on the main sequence; however, the structure of the star in the neighborhood of the convective core regions is currently underconstrained. We use asteroseismology to study the properties of the stellar core, in particular convective boundary mixing through convective overshoot, in such intermediate-mass stars. These core regions are poorly constrained by the acoustic (p) mode oscillations observed for cool main-sequence stars. Consequently, we seek fossil signatures of main-sequence core properties during the subgiant and early first-ascent red giant phases of evolution. During these stages of stellar evolution, modes of mixed character that sample the deep interior can be observed. These modes sample the parts of the stars that are affected by the main-sequence structure of these regions. We model the global and near-core properties of 62 subgiant and early first-ascent red giant branch stars observed by theKepler, K2, and TESS space missions. We find that the effective overshoot parameter,αov,eff, increases fromM= 1.0MtoM= 1.2Mbefore flattening out, although we note that the relationship betweenαov,effand mass will depend on the incorporated modeling choices of internal physics and nuclear reaction network. We also situate these results within existing studies of main-sequence convective core boundaries.

     
    more » « less
  5. ABSTRACT

    In this work, we combine information from solar-like oscillations, high-resolution spectroscopy, and Gaia astrometry to derive stellar ages, chemical abundances, and kinematics for a group of seven metal-poor red giants and characterize them in a multidimensional chrono-chemo-dynamical space. Chemical abundance ratios were derived through classical spectroscopic analysis employing 1D LTE atmospheres on Keck/HIRES spectra. Stellar ages, masses, and radii were calculated with grid-based modelling, taking advantage of availability of asteroseismic information from Kepler. The dynamical properties were determined with galpy using Gaia EDR3 astrometric solutions. Our results suggest that underestimated parallax errors make the effect of Gaia parallaxes more important than different choices of model grid or – in the case of stars ascending the red giant branch – mass-loss prescription. Two of the stars in this study are identified as potentially evolved halo blue stragglers. Four objects are likely members of the accreted Milky Way halo, and their possible relationship with known accretion events is discussed.

     
    more » « less