Abstract While solar-like oscillations in red giants have been observed at massive scales by the Kepler mission, few features of these oscillation mode frequencies, other than their global properties, have been exploited for stellar characterization. The signatures of acoustic glitches in mode frequencies have been used for studying main-sequence stars, but the validity of applying such techniques to evolved red giants, particularly pertaining to the inclusion of nonradial modes, has been less well examined. Making use of new theoretical developments, we characterize glitches using theπmodes associated with red giant stellar models, and use our procedure to examine for the first time how the properties of the Heiiacoustic glitch—specifically its amplitude and associated acoustic depth—vary over the course of evolution up the red giant branch, and with respect to other fundamental stellar properties. We find that the acoustic depths of these glitches, in conjunction with other spectroscopic information, discriminate between red giants in the first-ascent and core-helium-burning phases. We critically reexamine previous attempts to constrain acoustic glitches from nonradial (in particular dipole) modes in red giants. Finally, we apply our fitting procedure to Kepler data, to evaluate its robustness to noise and other observational systematics. 
                        more » 
                        « less   
                    
                            
                            The Aarhus red giants challenge: II. Stellar oscillations in the red giant branch phase
                        
                    
    
            Contact. The large quantity of high-quality asteroseismic data that have been obtained from space-based photometric missions and the accuracy of the resulting frequencies motivate a careful consideration of the accuracy of computed oscillation frequencies of stellar models, when applied as diagnostics of the model properties. Aims. Based on models of red-giant stars that have been independently calculated using different stellar evolution codes, we investigate the extent to which the differences in the model calculation affect the model oscillation frequencies and other asteroseismic diagnostics. Methods. For each of the models, which cover four different masses and different evolution stages on the red-giant branch, we computed full sets of low-degree oscillation frequencies using a single pulsation code and, from these frequencies, typical asteroseismic diagnostics. In addition, we carried out preliminary analyses to relate differences in the oscillation properties to the corresponding model differences. Results. In general, the differences in asteroseismic properties between the different models greatly exceed the observational precision of these properties. This is particularly true for the nonradial modes whose mixed acoustic and gravity-wave character makes them sensitive to the structure of the deep stellar interior and, hence, to details of their evolution. In some cases, identifying these differences led to improvements in the final models presented here and in Paper I; here we illustrate particular examples of this. Conclusions. Further improvements in stellar modelling are required in order fully to utilise the observational accuracy to probe intrinsic limitations in the modelling and improve our understanding of stellar internal physics. However, our analysis of the frequency differences and their relation to stellar internal properties provides a striking illustration of the potential, in particular, of the mixed modes of red-giant stars for the diagnostics of stellar interiors. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1716436
- PAR ID:
- 10298052
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 635
- ISSN:
- 0004-6361
- Page Range / eLocation ID:
- A165
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Context. With the advent of space-based asteroseismology, determining accurate properties of red-giant stars using their observed oscillations has become the focus of many investigations due to their implications in a variety of fields in astrophysics. Stellar models are fundamental in predicting quantities such as stellar age, and their reliability critically depends on the numerical implementation of the physics at play in this evolutionary phase. Aims. We introduce the Aarhus red giants challenge, a series of detailed comparisons between widely used stellar evolution and oscillation codes that aim to establish the minimum level of uncertainties in properties of red giants arising solely from numerical implementations. We present the first set of results focusing on stellar evolution tracks and structures in the red-giant-branch (RGB) phase. Methods. Using nine state-of-the-art stellar evolution codes, we defined a set of input physics and physical constants for our calculations and calibrated the convective efficiency to a specific point on the main sequence. We produced evolutionary tracks and stellar structure models at a fixed radius along the red-giant branch for masses of 1.0 M ⊙ , 1.5 M ⊙ , 2.0 M ⊙ , and 2.5 M ⊙ , and compared the predicted stellar properties. Results. Once models have been calibrated on the main sequence, we find a residual spread in the predicted effective temperatures across all codes of ∼20 K at solar radius and ∼30–40 K in the RGB regardless of the considered stellar mass. The predicted ages show variations of 2–5% (increasing with stellar mass), which we attribute to differences in the numerical implementation of energy generation. The luminosity of the RGB-bump shows a spread of about 10% for the considered codes, which translates into magnitude differences of ∼0.1 mag in the optical V -band. We also compare the predicted [C/N] abundance ratio and find a spread of 0.1 dex or more for all considered masses. Conclusions. Our comparisons show that differences at the level of a few percent still remain in evolutionary calculations of red giants branch stars despite the use of the same input physics. These are mostly due to differences in the energy generation routines and interpolation across opacities, and they call for further investigation on these matters in the context of using properties of red giants as benchmarks for astrophysical studies.more » « less
- 
            Context: Modeling of the stars in the red clump (RC), that is, core helium-burning stars that have gone through a He flash, is challenging because of the uncertainties associated with the physical processes in their core and during the helium flash. By probing the internal stellar structure, asteroseismology allows us to constrain the core properties of RC stars and eventually, to improve our understanding of this evolutionary phase. Aims: We aim to quantify the impact on the seismic properties of the RC stars of the two main core modeling uncertainties: core boundary mixing, and helium-burning nuclear reaction rates. Methods: Using the MESA stellar evolution code, we computed models with different core boundary mixing as well as different 3α and 12C(alpha, gamma)16O nuclear reaction rates. We investigated the impact of these parameters on the period spacing ΔΠ, which is a probe of the region around the core. Results: We find that different core boundary mixing schemes yield significantly different period spacings, with differences of 30 s between the maximum ΔΠ value computed with semiconvection and maximal overshoot. We show that an increased rate of 12C(alpha, gamma)16O lengthens the core helium-burning phase, which extends the range of ΔΠ covered by the models during their evolution. This results in a difference of 10 s between the models computed with a nominal rate and a rate multiplied by 2, which exceeds the observational uncertainties. The effect of changing the 3α reaction rate is comparatively small. Conclusions. The core boundary mixing is the main source of uncertainty in the seismic modeling of RC stars. Moreover, the effect of the 12C(alpha, gamma)16O is non-negligible, even though it is difficult to distinguish from the effect of the mixing. This degeneracy could be seen more frequently in the future in the new seismic data from the PLATO mission and through theoretical constraints from numerical simulations.more » « less
- 
            Abstract Asteroseismic inferences of main-sequence solar-like oscillators often rely on best-fit models. However, these models cannot fully reproduce the observed mode frequencies, suggesting that the internal structure of the model does not fully match that of the star. Asteroseismic structure inversions provide a way to test the interior of our stellar models. Recently, structure inversion techniques were used to study 12 stars with radiative cores. In this work, we extend that analysis to 43 main-sequence stars with convective cores observed by Kepler to look for differences in the sound speed profiles in the inner 30% of the star by radius. For around half of our stars, the structure inversions show that our models reproduce the internal structure of the star, where the inversions are sensitive, within the observational uncertainties. For the stars where our inversions reveal significant differences, we find cases where our model sound speed is too high and cases where our model sound speed is too low. We use the star with the most significant differences to explore several changes to the physics of our model in an attempt to resolve the inferred differences. These changes include using a different overshoot prescription and including the effects of diffusion, gravitational settling, and radiative levitation. We find that the resulting changes to the model structure are too small to resolve the differences shown in our inversions.more » « less
- 
            The robustness of inferred envelope and core rotation rates of red giant stars from asteroseismologyContext.Rotation is an important phenomenon influencing stellar structure and evolution, however, it has not been adequately modelled thus far. Therefore, accurate estimates of internal rotation rates are valuable for constraining stellar evolution models. Aims.We aim to assess the accuracy of asteroseismic estimates of internal rotation rates and how they depend on the fundamental stellar parameters. Methods.We applied the recently developed extended-multiplicative optimally localised averages (eMOLA) inversion method, to infer localised estimates of internal rotation rates of synthetic observations of red giants. We searched for suitable reference stellar models, following a grid-based approach, and we assessed the robustness of the resulting inferences with respect to the choice of reference model. Results.We find that matching the mixed-mode pattern between the observation and the reference model is an important criterion for selecting suitable reference models. We propose (i) selecting a set of reference models based on the correlation between the observed rotational splittings and the mode-trapping parameter; (ii) computing the rotation rates for all these models; and (iii) using the average value obtained across the whole set as the estimate of the internal rotation rates. We find that the effect of a near surface perturbation in the synthetic observations on the rotation rates estimated based on the correlation between the observed rotational splittings and the mode-trapping parameter is negligible. Conclusions.We conclude that when using an ensemble of reference models that are selected by matching the mixed-mode pattern, the input rotation rates can be recovered across a range of fundamental stellar parameters such as mass, mixing-length parameter, and composition. Further, red giant rotation rates determined in this way are also independent of any near-surface perturbation of the stellar structure.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    