Su, C.; Gritzalis, D.; Piuri, V.
(Ed.)
Many cyber-physical systems (CPS) are critical infrastructure. Security attacks on these critical systems can have catastrophic consequences, putting human lives at risk. Consequently, it is very important to pace CPS systems to red-teaming/blue teaming exercises to understand vulnerabilities and the progression/impact of cyber attacks on them. Since it is not always prudent to conduct such security exercises on live CPS, researchers use CPS testbeds to conduct security-related experiments. Often, such testbeds are very expensive. Since attack scripts used in red-teaming/blue-teaming exercises are, in the strictest sense of the term, malicious in nature, there is a need to protect the testbed itself from these attack experiments that have the potential to go awry. Moreover, when multiple experiments are conducted on the same testbed, there is a need to maintain isolation among these experiments so that no experiment can accidentally or maliciously affect/compromise others. In this work, we describe a novel security architecture and framework to ensure protection of security-related experiments on a CPS testbed and at the same time support secure communication services among simultaneously running experiments based on well-formulated access control policies.
more »
« less
An official website of the United States government
