High-performance computing (HPC) resources are used for compute-demanding calculations in various fields of science and engineering. They are large computational facilities utilized by many users simultaneously. High utilization often leads to high waiting times. Simulating users' behavior on such a system can help with future system design, develop user interventions, and ultimately improve the user’s experience and resource utilization. Here, we present HPCMod, an Agent-Based Modeling Framework for Modeling Users on HPC Resources. The key concept of the framework is the representation of the user's computational needs: the user project is represented as a collection of possibly dependent compute tasks. Each task can be executed as a single compute job or a series of jobs, depending on the task size. Some tasks can be too big to be executed in one chunk; such a situation often occurs during molecular dynamics simulation. There are multiple ways in which tasks can be split into jobs, and users will make their decisions based on previous experience, application parallel scalability, and available resources. For example, a user's compute task requires 32 node hours; it can be executed in multiple ways: a single 32-hour job on one node, two sequential 16-hour jobs on one node, one 16-hour job on two nodes, and so on. In the HPCMod, we implemented three models: 1) historical replay of compute jobs, 2) simulation of reconstituted compute tasks using historical job sizes, and 3) adaptive compute tasks splitting where users can modify jobs parameters given available resources till the execution of the next job in line. The framework was tested on a ten-node test system and a larger 1,736-node system modeled after a portion of TACC Stampede-2. The HPC resource model implements a first in first out (FIFO) scheduler with backfill scheduling. The initial results showed that on a tiny system, adaptive task-splitting is beneficial for the user but leads to a larger number of jobs. On a large system, the adaptive task-splitting was also very beneficial, decreasing waiting times for users using this strategy almost two times; however, other users got a 5% increase in their wait time. Further investigation is needed as the current task reconstitution algorithm is deterministic and does not allow quantification of job recombination uncertainties. The Julia-based implementation is fast: five years of historic workflow consisting of a million jobs and a one-hour stepping took around three minutes. 
                        more » 
                        « less   
                    This content will become publicly available on July 18, 2026
                            
                            Predictive Modeling of HPC Job Queue Times: Improving User Decision-Making and Resource Utilization
                        
                    
    
            This work presents a framework for estimating job wait times in High-Performance Computing (HPC) scheduling queues, leverag- ing historical job scheduling data and real-time system metrics. Using machine learning techniques, specifically Random Forest and Multi-Layer Perceptron (MLP) models, we demonstrate high accuracy in predicting wait times, achieving 94.2% reliability within a 10-minute error margin. The framework incorporates key fea- tures such as requested resources, queue occupancy, and system utilization, with ablation studies revealing the significance of these features. Additionally, the framework offers users wait time esti- mates for different resource configurations, enabling them to select optimal resources, reduce delays, and accelerate computational workloads. Our approach provides valuable insights for both users and administrators to optimize job scheduling, contributing to more efficient resource management and faster time to scientific results. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2137603
- PAR ID:
- 10625658
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400713989
- Page Range / eLocation ID:
- 1 to 4
- Format(s):
- Medium: X
- Location:
- Columbus Ohio USA
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Apache Mesos, a two-level resource scheduler, provides resource sharing across multiple users in a multi-tenant clustered environment. Computational resources (i.e., CPU, memory, disk, etc.) are distributed according to the Dominant Resource Fairness (DRF) policy. Mesos frameworks (users) receive resources based on their current usage and are responsible for scheduling their tasks within the allocation. We have observed that multiple frameworks can cause fairness imbalance in a multi-user environment. For example, a greedy framework consuming more than its fair share of resources can deny resource fairness to others. The user with the least Dominant Share is considered first by the DRF module to get its resource allocation. However, the default DRF implementation, in Apache Mesos' Master allocation module, does not consider the overall resource demands of the tasks in the queue for each user/framework. This lack of awareness can lead to poor performance as users without any pending task may receive more resource offers, and users with a queue of pending tasks can starve due to their high dominant shares. In a multi-tenant environment, the characteristics of frameworks and workloads must be understood by cluster managers to be able to define fairness based on not only resource share but also resource demand and queue wait time. We have developed a policy driven queue manager, Tromino, for an Apache Mesos cluster where tasks for individual frameworks can be scheduled based on each framework's overall resource demands and current resource consumption. Dominant Share and demand awareness of Tromino and scheduling based on these attributes can reduce (1) the impact of unfairness due to a framework specific configuration, and (2) unfair waiting time due to higher resource demand in a pending task queue. In the best case, Tromino can significantly reduce the average waiting time of a framework by using the proposed Demand-DRF aware policy.more » « less
- 
            As the popularity of quantum computing continues to grow, efficient quantum machine access over the cloud is critical to both academic and industry researchers across the globe. And as cloud quantum computing demands increase exponentially, the analysis of resource consumption and execution characteristics are key to efficient management of jobs and resources at both the vendor-end as well as the client-end. While the analysis and optimization of job / resource consumption and management are popular in the classical HPC domain, it is severely lacking for more nascent technology like quantum computing.This paper proposes optimized adaptive job scheduling to the quantum cloud taking note of primary characteristics such as queuing times and fidelity trends across machines, as well as other characteristics such as quality of service guarantees and machine calibration constraints. Key components of the proposal include a) a prediction model which predicts fidelity trends across machine based on compiled circuit features such as circuit depth and different forms of errors, as well as b) queuing time prediction for each machine based on execution time estimations.Overall, this proposal is evaluated on simulated IBM machines across a diverse set of quantum applications and system loading scenarios, and is able to reduce wait times by over 3x and improve fidelity by over 40% on specific usecases, when compared to traditional job schedulers.more » « less
- 
            As the popularity of quantum computing continues to grow, efficient quantum machine access over the cloud is critical to both academic and industry researchers across the globe. And as cloud quantum computing demands increase exponentially, the analysis of resource consumption and execution characteristics are key to efficient management of jobs and resources at both the vendor-end as well as the client-end. While the analysis and optimization of job / resource consumption and management are popular in the classical HPC domain, it is severely lacking for more nascent technology like quantum computing.This paper proposes optimized adaptive job scheduling to the quantum cloud taking note of primary characteristics such as queuing times and fidelity trends across machines, as well as other characteristics such as quality of service guarantees and machine calibration constraints. Key components of the proposal include a) a prediction model which predicts fidelity trends across machine based on compiled circuit features such as circuit depth and different forms of errors, as well as b) queuing time prediction for each machine based on execution time estimations.Overall, this proposal is evaluated on simulated IBM machines across a diverse set of quantum applications and system loading scenarios, and is able to reduce wait times by over 3x and improve fidelity by over 40% on specific usecases, when compared to traditional job schedulers.more » « less
- 
            Application performance variability caused by network contention is a major issue on dragonfly based systems. This work-in-progress study makes two contributions. First, we analyze real workload logs and conduct application experiments on the production system Theta at Argonne to evaluate application performance variability. We find a strong correlation between system utilization and performance variability where a high system utilization (e.g., above 95%) can cause up to 21% degradation in application performance. Next, driven by this key finding, we investigate a scheduling policy to mitigate workload interference by leveraging the fact that production systems often exhibit diurnal utilization behavior and not all users are in a hurry for job completion. Preliminary results show that this scheduling design is capable of improving system productivity (measured by scheduling makespan) as well as improving user-level scheduling metrics such as user wait time and job slowdown.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
