skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: Sub‐Daily Variations in Tree Xylem Water Isotopic Compositions in a Temperate Northeastern US Forest
ABSTRACT Sampling of stable isotopes in plant xylem water (δ2H, δ18O) has become a ubiquitous technique to study spatiotemporal variations in the water taken up by plant roots; however, open questions remain concerning the most appropriate time of day to sample trees to obtain representative xylem water isotopic values (δXYLEM). We sampled the δXYLEMof oak and maple trees prior to solar midday (i.e., in a recommended sampling window) and then again after solar midday (i.e., outside of the recommended window) across 4 months. The paired root mean squared difference between AM and PM δ18O ranged from 1.00‰ to 1.16‰ for maples and 0.23‰ to 2.55‰ for oaks across all sampling dates. Xylem water seasonal origin index (SOI) values derived from AM and PM δXYLEMsamples were significantly different, though both SOI estimates supported the conclusion that maple and oak δXYLEMreflected summer precipitation on all sampling dates. We conclude that sampling time of day is a significant consideration in the design of δXYLEMsampling campaigns; however, our findings also support flexibility in the collection time of δXYLEMin field sites where sampling during the optimal time of day is challenging.  more » « less
Award ID(s):
2243263
PAR ID:
10625673
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Hydrological Processes
Volume:
39
Issue:
4
ISSN:
0885-6087
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Rainfall amount and intensity are increasing under anthropogenic climate change, but many instrument records span less than a century. The oxygen isotopic composition of tree‐ring cellulose (δ18Ocell) reflects local source water, climate, and tree physiology. The patterns of δ18Ocellwithin tree‐rings has the potential to extend pre‐instrument climate records with subannual resolution, but the influences on intra‐ring δ18Ocellprofiles are unexplored in many settings. In this study, high‐resolution δ18Ocellprofiles were analyzed on three longleaf pine trees growing in a native savanna in Louisiana, United States. The time series covers a wide range of rainfall conditions from 2001 to 2008 C.E. with a total of 421 δ18Ocellanalyses. The δ18Ocellvalues for individual years are well correlated with each other both within and between trees (r = 0.71–0.78). We used principal components analysis andk‐means clustering to differentiate δ18Ocellprofiles into two groupings: symmetrical δ18Ocellprofiles versus asymmetrical profiles that have depressed latewood δ18Ocellvalues. The slope of latewood δ18Ocellprofiles and mean δ18Ocellvalues of latewood tissue correlate with total June‐November precipitation. We hypothesize that poorly drained soils in the study area mediate the influence of any individual storm event: in dry years,18O‐depleted signals from convective storms are moderated by subsequent evaporative enrichment of standing water, whereas in wet years, increased humidity and frequent re‐supply of18O‐depleted water overrides evaporative enrichment effects, resulting in low δ18Ocellof latewood. These results suggest that δ18Ocellproxies for tropical storm occurrence need to account for soil conditions at the site of tree growth. 
    more » « less
  2. Abstract Understanding how mixed-species forests uptake subsurface water sources is critical to projecting future forest water use and stress. Variation in root water uptake (RWU) depths and volumes is common among trees but it is unclear how it is affected by species identity, local water availability or neighboring tree species compositions. We evaluated the hypothesis that RWU depths and the age of water (i.e., time since water entered soils as precipitation) taken up by red maples (Acer rubrum) varied significantly between two forested plots, both containing red maples, similar soils, topography and hydrologic conditions, but having different neighboring tree species. We measured soil moisture contents as well as stable isotopes (δ2H, δ18O) in plant xylem water and soil moisture across two years. These data were used to calibrate process-based stand-level ecohydrological models for each plot to estimate species-level RWU depths. Model calibration suggested significant differences in red maple tree RWU depths, transpiration rates and the ages of water taken up by maples across the two stands. Maple trees growing with ash and white spruce relied on significantly deeper and older water from the soil profile than maple trees growing with birch and oak. The drought risk profile experienced by maple trees differed between the plots as demonstrated by strong correlations between precipitation and model simulated transpiration on a weekly time scale for maples taking up shallow soil moisture and a monthly time scale for maples reliant on deeper soil moisture. These findings carry significant implications for our understanding of water competition in mixed-species forests and for the representation of forest rooting strategies in hydrologic and earth systems models. 
    more » « less
  3. Abstract We evaluate the efficacy of the stable isotope composition of precipitation and plant waxes as proxies for paleoaltimetry and paleohydrology in the northern tropical Andes. We report monthly hydrogen (δ2Hp) and oxygen (δ18Op) isotope values of precipitation for an annual cycle, and hydrogen isotope values of plant waxes (δ2Hwax) obtained from modern soils along the eastern and western flanks of the Eastern Cordillera of Colombia. δ2Hp, δ18Op, as well as the unweighted mean δ2Hwaxvalues ofn‐C29,n‐C31, andn‐C33n‐alkanes in the eastern flank show a dependence on elevation (R2 = 0.90, 0.82, and 0.65, respectively). In stark contrast, the stable isotope compositions of neither precipitation nor plant waxes from the western flank correlate with elevation (R2 < 0.23), on top of a negligible (p‐value >0.05) correlation between δ2Hwaxand δ2Hp. In general, δ2Hwaxvalues along the eastern flank of the Eastern Cordillera seem to follow the trend of a simple Rayleigh distillation process that is consistent with studies elsewhere on the eastern side of the Andes in South America. Neither δ2Hpnor δ18Op, and therefore δ2Hwax, offer reliable estimates of past elevations in the western flank, due perhaps to water vapor source mixing, evaporation overprint, contrasting plant communities, and/or differences in evapotranspiration. Thus, δ2Hwaxis only reliable for paleohydrology and paleoaltimetry reconstructions on the eastern flank of the Andes, whereas interpretations based on δ2Hpand/or δ18Opwest of the highest point of the Eastern Cordillera need to consider mixing of moisture sources in addition to precipitation amount. 
    more » « less
  4. Abstract Drought events may increase the likelihood that the plant water transport system becomes interrupted by embolism. Yet our knowledge about the temporal frequency of xylem embolism in the field is frequently lacking, as it requires detailed, long‐term measurements.We measured xylem embolism resistance and midday xylem water potentials during the consecutive summers of 2019 and 2020 to estimate maximum levels of embolism in leaf and stem xylem of ten temperate angiosperm tree species. We also studied vessel and pit membrane characteristics based on light and electron microscopy to corroborate potential differences in embolism resistance between leaves and stems.Apart fromA.pseudoplatanusandQ.petraea, eight species experienced minimum xylem water potentials that were close to or below those required to initiate embolism. Water potentials corresponding to ca. 12% loss of hydraulic conductivity (PLC) could occur in six species, while considerable levels of embolism around 50% PLC were limited toB.pendulaandC.avellana. There was a general agreement in embolism resistance between stems and leaves, with leaves being equally or more resistant than stems. Also, xylem embolism resistance was significantly correlated to intervessel pit membrane thickness (TPM) for stems, but not to vessel diameter and total intervessel pit membrane surface area of a vessel.Our data indicate that low amounts of embolism occur in most species during moderate summer drought, and that considerable levels of embolism are uncommon. Moreover, our experimental andTPMdata show that leaf xylem is generally no more vulnerable than stem xylem. 
    more » « less
  5. Understanding variations in the routes by which wild animals gain and lose water is challenging, and common methods require longitudinal sampling, which can be prohibitive. However, a new approach usesΔ′17OBW(Δ′17O of animal body water), calculated from measurements ofδ′17O andδ′18O in a single sample, as a natural tracer of water flux.Δ′17OBWis promising, but its relationship to organismal variables such as metabolic rate and water intake have not been validated. Here, we continuously measured oxygen influxes and effluxes of captive deer mice (Peromyscus maniculatus), and manipulated their water intake and metabolic rate. We used these oxygen flux data to predictΔ′17OBWfor the mice and compared these model predictions withΔ′17OBWmeasured in blood plasma samples. As expected,Δ′17OBWpositively correlated with drinking water intake and negatively correlated with metabolic rate. All predictedΔ′17OBW(based on measured oxygen fluxes) values differed from measuredΔ′17OBWvalues by <30 per meg (mean absolute difference: 11 ± 9 per meg), suggesting high accuracy for this modelling approach because studies currently report a range of 300 per meg forΔ′17OBWamong mammals, birds and fish. 
    more » « less