skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Anti-Windup Compensation for Quadrotor Trajectory Tracking With External Disturbances
This letter considers the problem of trajectory tracking for quadrotors operating in wind conditions that result in propeller thrust saturation. To address this problem, an anti-windup compensator (AWC) is developed to reduce the tracking performance degradation and destabilizing effects from thrust saturation. Relationships are derived showing how the tracking error and AWC states are influenced by the wind disturbance and saturation, and how the influences depend on the controller and AWC gains. As a result, these gains can be tuned to achieve desired performance levels. Simulation results are presented to validate the effectiveness of the proposed method.  more » « less
Award ID(s):
2219008
PAR ID:
10625681
Author(s) / Creator(s):
;
Editor(s):
Tarbouriech, S
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Control Systems Letters
Volume:
8
ISSN:
2475-1456
Page Range / eLocation ID:
2913 to 2918
Subject(s) / Keyword(s):
Quadrotors, tracking, anti-windup
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, the problem of anti-windup compensator (AWC) design for guidance and control of quadrotors in an unknown environment is addressed. Quadrotors can be affected by disturbances (such as wind), which potentially result in saturation of the propellers. When saturation occurs, the flight can become unstable, leading to a crash. On the other hand, designing an AWC to mitigate the saturation effects in the control system of a quadrotor can be a challenging task due to the heavy couplings and complex nonlinear dynamics. For this reason, we propose a new structure to design an AWC-based control system to solve this problem. Simulation results are presented in three cases: 1-without saturation, 2-with saturation - without AWC, 3-with saturation - with AWC. The effectiveness of the proposed theoretical results are verified by comparisons. 
    more » « less
  2. In this paper, the problem of anti-windup compensator (AWC) design for implementation in the autonomous guidance and control of quadrotors is addressed. The flight environment contains obstacles with no prior knowledge of their locations. Instead, obstacles location are determined in real time, and the locations are used by a guidance algorithm for avoidance. Wind disturbances are also considered since their presence can potentially result in saturation of the propellers. When this occurs, the flight can become unstable, leading to a crash. Designing an AWC to mitigate the effects of saturation in the control system of a quadrotor can be a challenging task due to the heavy couplings and complex nonlinear dynamics. For this reason, we propose a new structure to design a static AWC-based control system to solve this problem. The effectiveness of the proposed theoretical results are verified by comparing results from simulation experiments. 
    more » « less
  3. Actuator constraints, particularly saturation limits, are an intrinsic and long‐standing problem in the implementation of most control systems. Model reference adaptive control (MRAC) is no exception and it may suffer considerably when actuator saturation is encountered. With this in mind, this paper proposes an anti‐windup strategy for model reference adaptive control schemes subject to actuator saturation. A prominent feature of the proposed compensator is that it has the same architecture as well‐known nonadaptive schemes, namely model recovery anti‐windup, which rely on the assumption that the system model is known accurately. Since, in the adaptive case, the model is largely unknown, the proposed approach uses an “estimate” of the system matrices for the anti‐windup formulation and modifies the adaptation laws that update the controller gains; if the (unknown) ideal control gains are reached, the model recovery anti‐windup formulation is recovered. The main results provide conditions under which, if theidealcontrol signal eventually lies within the control constraints, then the system states will converge to those of the reference model, that is, the tracking error will converge to zero asymptotically. The article deals with open‐loop stable linear systems and highlights the main challenges involved in the design of anti‐windup compensators for model‐reference adaptive control systems, demonstrating its success via a flight control application. 
    more » « less
  4. We consider the problem of trajectory planning for optimal relative orbit determination in the cislunar environment. The recent interest in cislunar space has created a need to develop autonomous tracking technologies that can maintain situational awareness of this dynamically complex regime. Optical sensors provide an ideal observation platform because of their low cost and versatility in tracking both cooperative and non-cooperative space objects. The estimation performance of an optical observer can be significantly enhanced through manuevering. This work develops a trajectory planning tool, compatible with low-thrust propulsion, for tracking one or multiple targets operating in proximity to the observer. We formulate an objective function that is a convex combination of the mutual information between target states and measurements, and the low-thrust control effort. The subsequent optimal control problem is solved via direct collocation using the successive convexification algorithm, which, we argue, is well suited for a potential onboard trajectory planning application. We demonstrate the tool for several relevant scenarios with one and multiple targets operating around periodic orbits in the circular restricted three-body problem. A sequential estimator's performance is evaluated using the Cramer-Rao lower bound and, compared to a purely passive observer, we show that optimizing the observer's trajectory can decrease this bound by up to several orders of magnitude within a planning window. This investigation provides an initial proof-of-concept to future onboard planning technologies for relative tracking in the cislunar domain. 
    more » « less
  5. Winged eVTOL aircraft’s ability to generate aerodynamic lift with wings and to create upward thrust with upward-facing rotors makes these vehicles capable of the kind of versatile flight needed in urban environments. Because of these vehicles’ aerodynamic complexities and their unique methods of producing thrusts and torques, control allocation is needed to determine how to distribute force and torque efforts across the aircraft’s actuators. However, current control allocation methods fail to properly represent the actuators’ complex dynamics and are unable to harness the full potential of these over-actuated vehicles. Current shortcomings include modeling rotors as linear effectors while the wide range of airspeeds experienced by eVTOL aircraft leads to significant nonlinearities in the thrust and torque achieved by each rotor. This means linear control allocation methods may consistently fail to produce desired thrusts and torques, which can inhibit the vehicle from tracking a trajectory at best, and at worst can cause the vehicle to stall and lose control. Additionally, current control allocation methods are often unable to prioritize low-energy actuators resulting in shorter battery life. We present a nonlinear control allocation method that considers a nonlinear rotor model, allows for prioritization of low-energy control surfaces over rotors, and reliably accounts for actuator saturation. Simulation results show a 90% reduction in high-airspeed trajectory tracking position error from a typical, linear least-squares pseudoinverse control allocation method while maintaining comparable energy use. 
    more » « less