In this paper, the problem of anti-windup compensator (AWC) design for guidance and control of quadrotors in an unknown environment is addressed. Quadrotors can be affected by disturbances (such as wind), which potentially result in saturation of the propellers. When saturation occurs, the flight can become unstable, leading to a crash. On the other hand, designing an AWC to mitigate the saturation effects in the control system of a quadrotor can be a challenging task due to the heavy couplings and complex nonlinear dynamics. For this reason, we propose a new structure to design an AWC-based control system to solve this problem. Simulation results are presented in three cases: 1-without saturation, 2-with saturation - without AWC, 3-with saturation - with AWC. The effectiveness of the proposed theoretical results are verified by comparisons.
more »
« less
This content will become publicly available on January 22, 2026
Static anti-windup compensator design for autonomous guidance and control of quadrotors
In this paper, the problem of anti-windup compensator (AWC) design for implementation in the autonomous guidance and control of quadrotors is addressed. The flight environment contains obstacles with no prior knowledge of their locations. Instead, obstacles location are determined in real time, and the locations are used by a guidance algorithm for avoidance. Wind disturbances are also considered since their presence can potentially result in saturation of the propellers. When this occurs, the flight can become unstable, leading to a crash. Designing an AWC to mitigate the effects of saturation in the control system of a quadrotor can be a challenging task due to the heavy couplings and complex nonlinear dynamics. For this reason, we propose a new structure to design a static AWC-based control system to solve this problem. The effectiveness of the proposed theoretical results are verified by comparing results from simulation experiments.
more »
« less
- Award ID(s):
- 2219008
- PAR ID:
- 10625685
- Publisher / Repository:
- Taylor & Francis
- Date Published:
- Journal Name:
- International Journal of Control
- ISSN:
- 0020-7179
- Page Range / eLocation ID:
- 1 to 12
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Tarbouriech, S (Ed.)This letter considers the problem of trajectory tracking for quadrotors operating in wind conditions that result in propeller thrust saturation. To address this problem, an anti-windup compensator (AWC) is developed to reduce the tracking performance degradation and destabilizing effects from thrust saturation. Relationships are derived showing how the tracking error and AWC states are influenced by the wind disturbance and saturation, and how the influences depend on the controller and AWC gains. As a result, these gains can be tuned to achieve desired performance levels. Simulation results are presented to validate the effectiveness of the proposed method.more » « less
-
Actuator constraints, particularly saturation limits, are an intrinsic and long‐standing problem in the implementation of most control systems. Model reference adaptive control (MRAC) is no exception and it may suffer considerably when actuator saturation is encountered. With this in mind, this paper proposes an anti‐windup strategy for model reference adaptive control schemes subject to actuator saturation. A prominent feature of the proposed compensator is that it has the same architecture as well‐known nonadaptive schemes, namely model recovery anti‐windup, which rely on the assumption that the system model is known accurately. Since, in the adaptive case, the model is largely unknown, the proposed approach uses an “estimate” of the system matrices for the anti‐windup formulation and modifies the adaptation laws that update the controller gains; if the (unknown) ideal control gains are reached, the model recovery anti‐windup formulation is recovered. The main results provide conditions under which, if theidealcontrol signal eventually lies within the control constraints, then the system states will converge to those of the reference model, that is, the tracking error will converge to zero asymptotically. The article deals with open‐loop stable linear systems and highlights the main challenges involved in the design of anti‐windup compensators for model‐reference adaptive control systems, demonstrating its success via a flight control application.more » « less
-
Insect-scale robots face two major locomotive challenges: constrained energetics and large obstacles that far exceed their size. Terrestrial locomotion is efficient yet mostly limited to flat surfaces. In contrast, flight is versatile for overcoming obstacles but requires high power to stay aloft. Here, we present a hopping design that combines a subgram flapping-wing robot with a telescopic leg. Our robot can hop continuously while controlling jump height and frequency in the range of 1.5 to 20 centimeters and 2 to 8.4 hertz. The robot can follow positional set points, overcome tall obstacles, and traverse challenging surfaces. It can also hop on a dynamically rotating plane, recover from strong collisions, and perform somersaults. Compared to flight, this design reduces power consumption by 64 percent and increases payload by 10 times. Although the robot relies on offboard power and control, the substantial payload and efficiency improvement open opportunities for future study on autonomous locomotion.more » « less
-
Man-made and natural disruptions such as planned constructions on roads, suspensions of bridges, and blocked roads by trees/mudslides/floods can often create obstacles that separate two connected regions. As a result, the traveling and reachability of agents from their respective regions to other regions can be affected. To minimize the impact of the obstacles and maintain agent accessibility, we initiate the problem of constructing a new pathway (e.g., a detour or new bridge) connecting the regions disconnected by obstacles from the mechanism design perspective. In the problem, each agent in their region has a private location and is required to access the other region. The cost of an agent is the distance from their location to the other region via the pathway. Our goal is to design strategyproof mechanisms that elicit truthful locations from the agents and approximately optimize the social or maximum cost of agents by determining locations in the regions for building a pathway. We provide a characterization of all strategyproof and anonymous mechanisms. For the social and maximum costs, we provide upper and lower bounds on the approximation ratios of strategyproof mechanisms.more » « less
An official website of the United States government
