skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 11, 2026

Title: Hybrid locomotion at the insect scale: Combined flying and jumping for enhanced efficiency and versatility
Insect-scale robots face two major locomotive challenges: constrained energetics and large obstacles that far exceed their size. Terrestrial locomotion is efficient yet mostly limited to flat surfaces. In contrast, flight is versatile for overcoming obstacles but requires high power to stay aloft. Here, we present a hopping design that combines a subgram flapping-wing robot with a telescopic leg. Our robot can hop continuously while controlling jump height and frequency in the range of 1.5 to 20 centimeters and 2 to 8.4 hertz. The robot can follow positional set points, overcome tall obstacles, and traverse challenging surfaces. It can also hop on a dynamically rotating plane, recover from strong collisions, and perform somersaults. Compared to flight, this design reduces power consumption by 64 percent and increases payload by 10 times. Although the robot relies on offboard power and control, the substantial payload and efficiency improvement open opportunities for future study on autonomous locomotion.  more » « less
Award ID(s):
2202477
PAR ID:
10613343
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
American Association for the Advancement of Science
Date Published:
Journal Name:
Science Advances
Volume:
11
Issue:
15
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Insects perform feats of strength and endurance that belie their small stature. Insect-scale robots—although subject to the same scaling laws—demonstrate reduced performance because existing microactuator technologies are driven by low–energy density power sources and produce small forces and/or displacements. The use of high–energy density chemical fuels to power small, soft actuators represents a possible solution. We demonstrate a 325-milligram soft combustion microactuator that can achieve displacements of 140%, operate at frequencies >100 hertz, and generate forces >9.5 newtons. With these actuators, we powered an insect-scale quadrupedal robot, which demonstrated a variety of gait patterns, directional control, and a payload capacity 22 times its body weight. These features enabled locomotion through uneven terrain and over obstacles. 
    more » « less
  2. This paper presents a simple but compact design of a bicycle-like robot for inspecting complex-shaped ferromagnetic structures. The design concept for versatile locomotion relies on two independently steered magnetic wheels formed in a bicycle-like configuration, allowing the robot to possess multi-directional mobility. The key feature of a reciprocating mechanism enables the robot to change its shape when passing obstacles. A dynamic joint of the robot configuration makes it naturally adapt to uneven and complex surfaces of steel structures. We demonstrate the usability and practical deployment of the robot for steel thickness measurement using an ultrasonic sensor. 
    more » « less
  3. Legged locomotion is a highly promising but under–researched subfield within the field of soft robotics. The compliant limbs of soft-limbed robots offer numerous benefits, including the ability to regulate impacts, tolerate falls, and navigate through tight spaces. These robots have the potential to be used for various applications, such as search and rescue, inspection, surveillance, and more. The state-of-the-art still faces many challenges, including limited degrees of freedom, a lack of diversity in gait trajectories, insufficient limb dexterity, and limited payload capabilities. To address these challenges, we develop a modular soft-limbed robot that can mimic the locomotion of pinnipeds. By using a modular design approach, we aim to create a robot that has improved degrees of freedom, gait trajectory diversity, limb dexterity, and payload capabilities. We derive a complete floating-base kinematic model of the proposed robot and use it to generate and experimentally validate a variety of locomotion gaits. Results show that the proposed robot is capable of replicating these gaits effectively. We compare the locomotion trajectories under different gait parameters against our modeling results to demonstrate the validity of our proposed gait models. 
    more » « less
  4. Abstract This paper introduces an innovative and streamlined design of a robot, resembling a bicycle, created to effectively inspect a wide range of ferromagnetic structures, even those with intricate shapes. The key highlight of this robot lies in its mechanical simplicity coupled with remarkable agility. The locomotion strategy hinges on the arrangement of two magnetic wheels in a configuration akin to a bicycle, augmented by two independent steering actuators. This configuration grants the robot the exceptional ability to move in multiple directions. Moreover, the robot employs a reciprocating mechanism that allows it to alter its shape, thereby surmounting obstacles effortlessly. An inherent trait of the robot is its innate adaptability to uneven and intricate surfaces on steel structures, facilitated by a dynamic joint. To underscore its practicality, the robot's application is demonstrated through the utilization of an ultrasonic sensor for gauging steel thickness, coupled with a pragmatic deployment mechanism. By integrating a defect detection model based on deep learning, the robot showcases its proficiency in automatically identifying and pinpointing areas of rust on steel surfaces. The paper undertakes a thorough analysis, encompassing robot kinematics, adhesive force, potential sliding and turn‐over scenarios, and motor power requirements. These analyses collectively validate the stability and robustness of the proposed design. Notably, the theoretical calculations established in this study serve as a valuable blueprint for developing future robots tailored for climbing steel structures. To enhance its inspection capabilities, the robot is equipped with a camera that employs deep learning algorithms to detect rust visually. The paper substantiates its claims with empirical evidence, sharing results from extensive experiments and real‐world deployments on diverse steel bridges, situated in both Nevada and Georgia. These tests comprehensively affirm the robot's proficiency in adhering to surfaces, navigating challenging terrains, and executing thorough inspections. A comprehensive visual representation of the robot's trials and field deployments is presented in videos accessible at the following links:https://youtu.be/Qdh1oz_oxiQ andhttps://youtu.be/vFFq79O49dM. 
    more » « less
  5. null (Ed.)
    Many soft robots are capable of significantly changing their shape, an ability that can offer advantages in many applications. For instance, such a robot can flatten its body to fit under small gaps and expand to move over large obstacles. Further, because these shape changes are usually driven by a pressurized fluid, if they act over a large area, they have the potential to apply large forces to the world. However, when these same shape changes are used for the locomotion of an untethered robot, they tend to result in slow forward movement. Here we present a hybrid soft-rigid elongated-sphere robot that decouples shape change from locomotion. Pairing a compliant, inflatable outer skin, which changes volume by 15x to both fit under and roll over obstacles and can lift objects up to 30 kg, with a wheeled internal carriage, we obtain relatively fast locomotion. A new two-sided controllable adhesive between the internal carriage and the skin enables the carriage to climb vertically inside the skin, allowing the robot to climb external obstacles. We present the design of the robot, simple modeling of its behavior, and experimental testing. Our work advances the area of hybrid soft-rigid robotics by demonstrating how leveraging the strengths of both soft and rigid systems can have quantifiable performance benefits. 
    more » « less