In this paper, we consider numerical approximations for a dendritic solidification phase field model with melt convection in the liquid phase, which is a highly nonlinear system that couples the anisotropic Allen-Cahn type equation, the heat equation, and the weighted Navier-Stokes equations together. We first reformulate the model into a form which is suitable for numerical approximations and establish the energy dissipative law. Then, we develop a linear, decoupled, and unconditionally energy stable numerical scheme by combining the modified projection scheme for the Navier-Stokes equations, the Invariant Energy Quadratization approach for the nonlinear anisotropic potential, and some subtle explicit-implicit treatments for nonlinear coupling terms. Stability analysis and various numerical simulations are presented.
more »
« less
On a positive-preserving, energy-stable numerical scheme to mass-action kinetics with detailed balance
In this paper, we provide a detailed theoretical analysis of the numerical scheme introduced in [C. Liu, C. Wang, and Y. Wang, J. Comput. Phys., 436:110253, 2021] for the reaction kinetics of a class of chemical reaction networks that satisfies detailed balance condition. In contrast to conventional numerical approximations, which are typically constructed based on ordinary differential equations (ODEs) for the concentrations of all involved species, the scheme is developed using the equations of reaction trajectories, which can be viewed as a generalized gradient flow of a physically relevant free energy. The unique solvability, positivity-preserving, and energy-stable properties are proved for the general case involving multiple reactions, under a mild condition on the stoichiometric matrix.
more »
« less
- Award ID(s):
- 2410740
- PAR ID:
- 10625705
- Publisher / Repository:
- International Press
- Date Published:
- Journal Name:
- Communications in Mathematical Sciences
- Volume:
- 23
- Issue:
- 5
- ISSN:
- 1539-6746
- Page Range / eLocation ID:
- 1447 to 1458
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In particle-based stochastic reaction–diffusion models, reaction rates and placement kernels are used to decide the probability per time a reaction can occur between reactant particles and to decide where product particles should be placed. When choosing kernels to use in reversible reactions, a key constraint is to ensure that detailed balance of spatial reaction fluxes holds at all points at equilibrium. In this work, we formulate a general partial-integral differential equation model that encompasses several of the commonly used contact reactivity (e.g., Smoluchowski-Collins-Kimball) and volume reactivity (e.g., Doi) particle models. From these equations, we derive a detailed balance condition for the reversible A + B ⇆ C reaction. In bounded domains with no-flux boundary conditions, when choosing unbinding kernels consistent with several commonly used binding kernels, we show that preserving detailed balance of spatial reaction fluxes at all points requires spatially varying unbinding rate functions near the domain boundary. Brownian dynamics simulation algorithms can realize such varying rates through ignoring domain boundaries during unbinding and rejecting unbinding events that result in product particles being placed outside the domain.more » « less
-
This paper presents the Dual Neural Network (DuNN) method, a physics-driven numerical method designed to solve elliptic partial differential equations and systems using deep neural network functions and a dual formulation. The underlying elliptic problem is formulated as an optimization of the complementary energy functional in terms of the dual variable, where the Dirichlet boundary condition is weakly enforced in the formulation. To accurately evaluate the complementary energy functional, we employ a novel discrete divergence operator. This discrete operator preserves the underlying physics and naturally enforces the Neumann boundary condition without penalization. For problems without reaction term, we propose an outer-inner iterative procedure that gradually enforces the equilibrium equation through a pseudo-time approach.more » « less
-
In this paper, we consider the numerical approximation for a phase field model of the coupled two-phase free flow and two-phase porous media flow. This model consists of Cahn– Hilliard–Navier–Stokes equations in the free flow region and Cahn–Hilliard–Darcy equations in the porous media region that are coupled by seven interface conditions. The coupled system is decoupled based on the interface conditions and the solution values on the interface from the previous time step. A fully discretized scheme with finite elements for the spatial discretization is developed to solve the decoupled system. In order to deal with the difficulties arising from the interface conditions, the decoupled scheme needs to be constructed appropriately for the interface terms, and a modified discrete energy is introduced with an interface component. Furthermore, the scheme is linearized and energy stable. Hence, at each time step one need only solve a linear elliptic system for each of the two decoupled equations. Stability of the model and the proposed method is rigorously proved. Numerical experiments are presented to illustrate the features of the proposed numerical method and verify the theoretical conclusions.more » « less
-
We present a C^0 interior penalty finite element method for the sixth-order modified phase field crystal equation. We demonstrate that the numerical scheme is uniquely solvable, unconditionally energy stable, and convergent. Additionally, the error analysis presented develops a detailed methodology for analyzing time dependent problems utilizing the Cinterior penalty method. We furthermore support the theory with several numerical experiments.more » « less
An official website of the United States government

