skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Harmonic and recorded ground motion simulations of failure in bonded particle models of massive rock slopes:Subtitle
This study investigates seismically-induced failure mechanisms in massive rock slopes using the bonded particle model. The data from this study can be used to track seismically-induced stresses in steep slope geometries leading up to failure initiation. The data can also be used to study the propagation of damage initiated by these failure mechanisms and track the development of mass movement enabled by the seismically-induced damage. The bonded particle model data includes the motion time-histories of an array of monitoring particles in the slope, the stress tensors of representative volume elements throughout loading, and the full model geometry, which can be used to reproduce the discrete element model.  more » « less
Award ID(s):
2301519
PAR ID:
10625730
Author(s) / Creator(s):
; ;
Publisher / Repository:
Designsafe-CI
Date Published:
Subject(s) / Keyword(s):
rock slope failure earthquake engineering discrete element model bonded particle model
Format(s):
Medium: X
Institution:
University of Washington Tacoma
Sponsoring Org:
National Science Foundation
More Like this
  1. This article presents a study of seismically-induced failure of massive steep rock slopes. A dynamic implementation of the bonded particle model (BPM) for rock is used to simulate the dynamic response and initiation of fracture in the slopes. Observation of forces that develop within the model in response to wave transmission and dynamic excitation provides insight into the fundamental mechanisms at work in seismically induced rock slope failure. Five distinct mechanisms of failure initiation are identified using non-destructive simulations and confirmed with destructive simulations. Three distinct modes of rock mass movement enabled by the failure mechanisms are identified. The predominant co-seismic failure mode was a shallow, highly-disrupted cliff collapse. Cliff collapse is initiated by relatively low levels of shaking. Shallow failures are also triggered at higher levels of shaking prior to the initiation of deeper, more coherent failures in the same seismic event. The results of the numerical study agree with qualitative historical surveys of seismically-induced rock slope failure trends and provide insight into the mechanisms behind observed co-seismic rock slope behavior. The frequently observed shallow failures are triggered by high compression stresses near the cliff toe combined with shallow subhorizontal ruptures behind the cliff face. These mechanisms are not well-captured by simplified analysis methods which may lead to underprediction of shallow co-seismic events. Deeper failure surfaces from stronger shaking create a base-isolation effect, slowing further disruption in the failure mass. Slope dynamic response and damage accumulation were shown to be interdependent and complex, emphasizing the importance of further research into the interaction between rock mass strength, slope geometry, structure, and ground motion characteristics. 
    more » « less
  2. Abstract Ambient vibration measurements can detect resonance frequency changes related to rock slope instability damage or boundary condition changes during progressive failure. However, the impact of slope kinematics on resonance changes and the expected form and sensitivity of frequency evolution during destabilization require clarification to improve the implementation of this technique across diverse settings. Since instrumented rock slope failures are rare, numerical modeling is needed to study the anticipated spectral response from in situ monitoring. We used 2D distinct‐element modeling to evaluate the sensitivity and evolution of rock slope resonance behavior for slab toppling, flexural toppling, and planar sliding instabilities during progressive failure. Model simulations revealed that fundamental resonance frequency decreases between 20% and 60% with changes correlated with increasing length of open joints. Changes to higher‐order frequencies associated with landslide sub‐volumes were also detectable for cases with multiple fracture networks. Resonance behavior was most pronounced for failures dominated by steeply dipping open tension cracks, that is, flexural and slab toppling. Additionally, amplification patterns across the slope varied for the flexural toppling and sliding cases, providing potential new information with which to characterize landslide failure mechanisms using ambient vibration array measurements. Our results demonstrate landslide characteristics well‐suited for in situ ambient resonance monitoring and provide new data describing the anticipated changes in resonance frequencies during progressive rock slope failure. 
    more » « less
  3. Over the past 50 years, seismically induced soil liquefaction has resulted in billions of dollars of damage to structures. Recent examples include extensive damage to infrastructure in Haiti (2010), Christchurch, New Zealand (2010–2011), and Ecuador (2016), among many others. New structures may be constructed on soil enhanced by ground improvement such as compaction grouting, stone columns, or Rammed aggregate pier (RAP) systems that rely on soil densification and reinforcement to provide stability. In New Zealand, RAP systems have been subjected to extensive testing to demonstrate their veracity in providing a reinforced crust of soil below shallow foundations. The results of the testing have been used to formulate design guidance for a variety of structural classifications and to provide validation of numerical models used to simulate the seismic response of these foundations. This paper extends the knowledgebase about RAP-supported foundation behavior by presenting the results of fully coupled hydro-mechanical numerical models developed to estimate the support mechanisms important for stability and settlements. The results of the research indicate that RAP can significantly reduce the seismically induced settlement. 
    more » « less
  4. Submarine slope failures pose risks to coastlines because they can damage infrastructure and generate tsunamis. Passive margin slope failures represent the largest mass failures on Earth, yet we know little about their dynamics. While numerous studies characterize the lithology, structure, seismic attributes and geometry of failure deposits, we lack direct observations of failure evolution. Thus, we lack insight into the relationships between initial conditions, slope failure initiation and evolution, and final deposits. To investigate submarine slope failure dynamics in relation to initial conditions and to observe failure processes we performed physical experiments in a benchtop flume and produced numerical models. Submarine slope failures were induced under controlled pore pressure within sand–clay mixtures (0–5 wt% clay). Increased clay content corresponded to increased cohesion and pore pressure required for failure. Subsurface fractures and tensile cracks were only generated in experiments containing clay. Falling head tests showed a log-linear relation between hydraulic conductivity and clay content, which we used in our numerical models. Models of our experiments effectively simulate overpressure (pressure in excess of hydrostatic) and failure potential for (non)cohesive sediment mixtures. Overall our work shows the importance of clay in reducing permeability and increasing cohesion to create different failure modes due to overpressure. 
    more » « less
  5. There are several possible mechanisms of failure of glassy polymers that can be activated by different states of stress in the material. They are reflected in the various failure criteria used to predict initiation of damage in the polymer based on the components of stress tensor. We investigated the applicability of several popular failure criteria (the von Mises, the Drucker-Prager, the parabolic stress, and the dilatational strain energy density) to predict processing-induced damage due to cooling after curing observed in 3D woven composites with high level of through-thickness reinforcement. We developed high-fidelity mesoscale finite element models of orthogonally reinforced carbon/epoxy composites and predicted their response to the uniform temperature drop from the curing to room temperature. Comparison of the simulation results with the X-ray computed microtomography indicates that matrix failure caused by the difference in thermal expansion coefficients of carbon fiber and epoxy resin is well predicted by the dilatational strain energy criterion. Initiation and propagation of this failure was numerically investigated using sequential deactivation of elements exceeding the allowable equivalent stress. 
    more » « less