skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: Effect of Lead in Antimony and Tin Dissolution from Recycled Lead–Acid Battery Dross in Hydrobromic Acid Solution
Demand and prices for antimony have increased over the last few years. Recycling supplied 15% of domestic consumption in the US, while the remaining 85% was imported. Hydrometallurgical processes have long used alkaline sulfide systems and hydrochloric acid, closing doors on new approaches. Bromine compounds have been recently used to recover PGMs and REEs successfully; thus, antimony leaching with bromine compounds is theoretically feasible. This research was conducted to develop a viable technology for hydrobromic acid between 50 °C and 70 °C as a leaching reagent on dross through single- and two-stage leaching using design of experiment (DoE) and adding sustainability to current industrial processes while minimizing waste products in recycling processes. The preliminary results showed that bromine, specifically hydrobromic acid, can be used as a leaching reagent for antimony dissolution. By decreasing the lead content in the solids and increasing the concentration, temperature, and reaction time, antimony leaching from the dross was increased from 20% to 50%. The findings, coupled with acid regeneration, can be implemented as an alternative to other reagents in industrial plants.  more » « less
Award ID(s):
2113788
PAR ID:
10625768
Author(s) / Creator(s):
;
Editor(s):
Bertruol, Daniel
Publisher / Repository:
Metals
Date Published:
Journal Name:
Metals
Edition / Version:
1
Volume:
15
Issue:
4
ISSN:
2075-4701
Page Range / eLocation ID:
356
Subject(s) / Keyword(s):
Antimony, Hydro metallurgy, hydrobromic acid
Format(s):
Medium: X Size: 3.1MB Other: pdf
Size(s):
3.1MB
Sponsoring Org:
National Science Foundation
More Like this
  1. The Lewis acid mediated reaction of allyltributylstannane compounds with β-hydroxy-α-diazo carbonyls gives β-allyl-α-diazo carbonyl products in good yields. This reaction proceeds via a vinyl diazonium ion intermediate which is intercepted by the allylstannane nucleophile. Importantly, the diazo functional group is retained over the course of the reaction to give diazo-containing scaffolds with increased molecular complexity. Methallyltrimethylsilane also serves as a functional allyl transfer reagent in this reaction. 
    more » « less
  2. Diverse sources of wastewater organic carbon can be microbially funneled into biopolymers like polyhydroxybutyrate (PHB) that can be further valorized by conversion to hydrocarbon fuels and industrial chemicals. We report the vapor-phase dehydration and decarboxylation of PHB-derived monomer acids, 3-hydroxybutyric acid (3HB) and crotonic acid (CA), in water to propylene over solid acid catalysts using a packed-bed continuous-flow reactor. Propylene yields increase with increased Brønsted acidity of catalysts, with amorphous silica–alumina and niobium phosphate yielding 52 and 60 %C (percent feedstock carbon, max 75 %C) of feedstock 3HB and CA, respectively; additional products include CO 2 and retro-aldol products (acetaldehyde and acetic acid). Deactivation studies indicate progressive and permanent steam deactivation of amorphous silica–alumina, while re-calcination partially recovers niobium phosphate activity. Experiments demonstrating sustained reactor operation over niobium phosphate provide a promising technology pathway for increasing valorization of organic-rich wastewater. 
    more » « less
  3. When fractionating corn cobs using the acetosolv process, the type of acid catalyst and their concentrations significantly affect the structure of the resulting lignin fraction as well as its catalytic deconstruction to aromatic monomers. Gel permeation chromatography (GPC) results show that the average molecular weight (~55,750 g/mol) of the sulfuric acid-pretreated corn cob lignin (H2SO4-CCL) is much greater than that (~39,400 g/mol) of hydrochloric acid-pretreated corn cob lignin (HCl-CCL) at similar acid concentrations, suggesting increased condensation reactions when using sulfuric acid. Further, a significant amount of bound sulfur content (~2900 ppm) was measured in H2SO4-CCL. This sulfur presence poisons the Pd/C catalyst used in the downstream catalytic conversion of the lignin in methanol to form monolignols and derivatives thereof. X-ray photoelectron spectroscopy (XPS) results reveal that both sulfide and sulfate groups are formed with the surface Pd sites, rendering them inactive and amenable to possible leaching. Elemental mapping of spent catalysts using scanning transmission electron microscopy-high angle annular dark field (STEM-HAADF)/energy dispersive x-ray (EDX) technique corroborate overlapping presence of Pd, S and O in the micrographs. 2D 1H/13C HSQC nuclear magnetic resonance (NMR) spectroscopy reveals that the use of H2SO4 preserves aryl ether linkages only at low concentrations. In contrast, the use of HCl in the acetosolv process preserves such linkages even at high concentrations while also mitigating sulfur poisoning of the Pd/C catalyst. Consequently, the yield of aromatic monomers during catalytic fractionation of HCl-CCL was doubled compared to H2SO4-CCL at identical operating conditions. 
    more » « less
  4. The presence of pharmaceuticals as microcontaminants in the environment has become a particular concern given the growing increase in water reuse and recycling to promote global sustainability of this resource. Pharmaceuticals can often undergo reversible interactions with soluble dissolved organic material such as humic acid, which may be an important factor in determining the bioavailability and effects of these compounds in the environment. In this study, high-performance affinity microcolumns containing non-covalently entrapped and immobilized humic acid are used to examine the binding strength and interactions of this agent for tetracycline, carbamazepine, ciprofloxacin, and norfloxacin, all common pharmaceutical microcontaminants known to bind humic acid. The binding constants, as measured with Aldrich humic acid, have good agreement with values reported in the literature. In addition, the effects of temperature, ionic strength, and pH on these interactions are examined with the humic acid microcolumns. This technique made it possible to determine the relative importance of electrostatic interactions vs non-polar interactions or hydrogen bonding on these binding processes. This study illustrates how affinity microcolumns can be used to screen and uniformly quantify binding by pharmaceuticals with humic acid, as well as to study the mechanisms of these interactions, with this information often being acquired in minutes and with small amounts of binding agent (~0.3 mg per microcolumn, which could be used over 200-300 experiments). Use of entrapment and affinity microcolumns can support similar research for a wide range of other microcontaminants with humic acid or alternative binding agents found in water and the environment. 
    more » « less
  5. null (Ed.)
    Copper-antimony-sulfide compounds have desirable earth-abundant compositions for application in renewable energy technologies, such as solar energy and waste heat recycling. These compounds can be synthesized by bottom-up, solution-phase techniques that are more energy and time efficient than conventional solid-state methods. Solution-phase methods typically produce nanostructured materials, which adds another dimension to control optical, electrical, and thermal material properties. This study focuses on a modified-polyol, solution-phase synthesis for tetrahedrite (Cu 12 Sb 4 S 13 ), a promising thermoelectric material with potential also for photovoltaic applications. To dope the tetrahedrite and tune material properties, the utility of the modified polyol synthetic approach has been demonstrated as a strategy to produce phase-pure tetrahedrite that incorporates transition metal (Fe, Co, Ni, Zn, Ag) dopants for Cu, Te dopant for Sb, and Se for S. Six of these reported tetrahedrite compounds have not previously been made by solution-phase methods. For the bottom-up formation of the tetrahedrite nanomaterials, the evolution of the chemical phases has been determined by an investigation of the reaction progress as a function of temperature and time. Digenite (Cu 1.8 S), covellite (CuS), and famatinite (Cu 3 SbS 4 ) are identified as key intermediates and are consistently observed for both undoped and doped tetrahedrites. The effect of nanostructuring and doping tetrahedrite on thermal properties has been investigated. It was found that nanostructured undoped tetrahedrite has reduced thermal stability relative to samples made by solid-state methods, while the addition of dopants for Cu increased the thermal stability of the material. Crystallinity, composition, and nanostructure of products and intermediates were characterized by powder X-ray diffraction, scanning electron microscopy with energy dispersive X-ray spectroscopy, and transmission electron microscopy. Thermal properties were investigated by differential scanning calorimetry and thermal gravimetric analysis. This synthetic study with thermal property analysis demonstrates the potential of the modified polyol method to produce tetrahedrite and other copper-antimony-sulfide compounds for thermoelectric and photovoltaic applications. 
    more » « less