Predicate-centric rules for rewriting queries is a key technique in optimizing queries. These include pushing down the predicate below the join and aggregation operators, or optimizing the order of evaluating predicates. However, many of these rules are only applicable when the predicate uses a certain set of columns. For example, to move the predicate below the join operator, the predicate must only use columns from one of the joined tables. By generating a predicate that satisfies these column constraints and preserves the semantics of the original query, the optimizer may leverage additional predicate-centric rules that were not applicable before. Researchers have proposed syntax-driven rewrite rules and machine learning algorithms for inferring such predicates. However, these techniques suffer from two limitations. First, they do not let the optimizer constrain the set of columns that may be used in the learned predicate. Second, machine learning algorithms do not guarantee that the learned predicate preserves semantics. In this paper, we present SIA, a system for learning predicates while being guided by counter-examples and a verification technique, that addresses these limitations. The key idea is to leverage satisfiability modulo theories to generate counter-examples and use them to iteratively learn a valid, optimal predicate. We formalize this problem by proving the key properties of synthesized predicates. We implement our approach in SIA and evaluate its efficacy and efficiency. We demonstrate that it synthesizes a larger set of valid predicates compared to prior approaches. On a collection of 200 queries derived from the TPC-H benchmark, SIA successfully rewrites 114 queries with learned predicates. 66 of these rewritten queries exhibit more than 2X speed up. 
                        more » 
                        « less   
                    
                            
                            Relational Query Synthesis ⋈ Decision Tree Learning
                        
                    
    
            We study the problem of synthesizing a core fragment of relational queries called select-project-join (SPJ) queries from input-output examples. Search-based synthesis techniques are suited to synthesizing projections and joins by navigating the network of relational tables but require additional supervision for synthesizing comparison predicates. On the other hand, decision tree learning techniques are suited to synthesizing comparison predicates when the input database can be summarized as a single labelled relational table. In this paper, we adapt and interleave methods from the domains of relational query synthesis and decision tree learning, and present an end-to-end framework for synthesizing relational queries with categorical and numerical comparison predicates. Our technique guarantees the completeness of the synthesis procedure and strongly encourages minimality of the synthesized program. We present Libra, an implementation of this technique and evaluate it on a benchmark suite of 1,475 instances of queries over 159 databases with multiple tables. Libra solves 1,361 of these instances in an average of 59 seconds per instance. It outperforms state-of-the-art program synthesis tools Scythe and PatSQL in terms of both the running time and the quality of the synthesized programs. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2107429
- PAR ID:
- 10625801
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- Proceedings of the VLDB Endowment
- Volume:
- 17
- Issue:
- 2
- ISSN:
- 2150-8097
- Page Range / eLocation ID:
- 250 to 263
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Synthesizing relational queries from data is challenging in the presence of recursion and invented predicates. We propose a fully automated approach to synthesize such queries. Our approach comprises of two steps: it first synthesizes a non-recursive query consistent with the given data, and then identifies recursion schemes in it and thereby generalizes to arbitrary data. This generalization is achieved by an iterative predicate unification procedure which exploits the notion of data provenance to accelerate convergence. In each iteration of the procedure, a constraint solver proposes a candidate query, and a query evaluator checks if the proposed program is consistent with the given data. The data provenance for a failed query allows us to construct additional constraints for the constraint solver and refine the search. We have implemented our approach in a tool named Mobius. On a suite of 21 challenging recursive query synthesis tasks, Mobius outperforms three state-of-the-art baselines Gensynth, ILASP, and Popper, both in terms of runtime and accuracy. We also demonstrate that the synthesized queries generalize well to unseen data.more » « less
- 
            In database-as-a-service platforms, automated ver-ification of query equivalence helps eliminate redundant computation in the form of overlapping sub-queries. Researchers have proposed two pragmatic techniques to tackle this problem. The first approach consists of reducing the queries to algebraic expressions and proving their equivalence using an algebraic theory. The limitations of this technique are threefold. It cannot prove the equivalence of queries with significant differences in the attributes of their relational operators (e.g., predicates in the filter operator). It does not support certain widely-used SQL features (e.g., NULL values). Its verification procedure is computationally intensive. The second approach transforms this problem to a constraint satisfaction problem and leverages a general-purpose solver to determine query equivalence. This technique consists of deriving the symbolic representation of the queries and proving their equivalence by determining the query containment relationship between the symbolic expressions. While the latter approach addresses all the limitations of the former technique, it only proves the equivalence of queries under set semantics (i.e., output tables must not contain duplicate tuples). However, in practice, database applications use bag semantics (i.e., output tables may contain duplicate tuples) In this paper, we introduce a novel symbolic approach for proving query equivalence under bag semantics. We transform the problem of proving query equivalence under bag semantics to that of proving the existence of a bijective, identity map between tuples returned by the queries on all valid inputs. We classify SQL queries into four categories, and propose a set of novel category-specific verification algorithms. We implement this symbolic approach in SPES and demonstrate that it proves the equivalence of a larger set of query pairs (95/232) under bag semantics compared to the SOTA tools based on algebraic (30/232) and symbolic approaches (67/232) under set and bag semantics, respectively. Furthermore, SPES is 3X faster than the symbolic tool that proves equivalence under set semantics.more » « less
- 
            We will demonstrate a prototype query-processing engine, which utilizes correlations among predicates to accelerate machine learning (ML) inference queries on unstructured data. Expensive operators such as feature extractors and classifiers are deployed as user-defined functions (UDFs), which are not penetrable by classic query optimization techniques such as predicate push-down. Recent optimization schemes (e.g., Probabilistic Predicates or PP) build a cheap proxy model for each predicate offline, and inject proxy models in the front of expensive ML UDFs under the independence assumption in queries. Input records that do not satisfy query predicates are filtered early by proxy models to bypass ML UDFs. But enforcing the independence assumption may result in sub-optimal plans. We use correlative proxy models to better exploit predicate correlations and accelerate ML queries. We will demonstrate our query optimizer called CORE, which builds proxy models online, allocates parameters to each model, and reorders them. We will also show end-to-end query processing with or without proxy models.more » « less
- 
            Over the past decade, deep reinforcement learning (RL) techniques have significantly advanced robotic systems. However, due to the complex architectures of neural network models, ensuring their trustworthiness is a considerable challenge. Programmatic reinforcement learning has surfaced as a promising approach. Nonetheless, synthesizing robot-control programs remains challenging. Existing methods rely on domain-specific languages (DSLs) populated with user-defined state abstraction predicates and a library of low-level controllers as abstract actions to boot synthesis, which is impractical in unknown environments that lack such predefined components. To address this limitation, we introduce RoboScribe, a novel abstraction refinement-guided program synthesis framework that automatically derives robot state and action abstractions from raw, unsegmented task demonstrations in high-dimensional, continuous spaces. It iteratively enriches and refines an initially coarse abstraction until it generates a task-solving program over the abstracted robot environment. RoboScribe is effective in synthesizing iterative programs by inferring recurring subroutines directly from the robot’s raw, continuous state and action spaces, without needing predefined abstractions. Experimental results show that RoboScribe programs inductively generalize to long-horizon robot tasks involving arbitrary numbers of objects, outperforming baseline methods in terms of both interpretability and efficiency.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    