ortho -Nitrobenzyl ( o NB) triggers have been extensively used to release various molecules of interest. However, the toxicity and reactivity of the spent chromophore, o -nitrosobenzaldehyde, remains an unaddressed difficulty. In this study we have applied the well-established supramolecular photochemical concepts to retain the spent trigger o -nitrosobenzaldehyde within the organic capsule after release of water-soluble acids and alcohols. The sequestering power of organic capsules for spent chromophores during photorelease from ortho -nitrobenzyl esters, ethers and alcohols is demonstrated with several examples.
more »
« less
A supramolecular approach towards the photorelease of encapsulated caged acids in water: 7-diethylaminothio-4-coumarinyl molecules as triggers
Herein, we establish the release of aliphatic acids in water upon excitation of 7-diethylaminothio-4-coumarinyl derivatives encapsulated within the organic host octa acid (OA). The 7-diethylaminothio-4-coumarinyl skeleton, employed here as the trigger, photoreleases caged molecules from the excited triplet state, in contrast to its carbonyl analogue, where the same reaction is known to occur from the excited singlet state. Encapsulation in OA solubilizes molecules in water that are otherwise water-insoluble, and retains the used trigger within itself following the release of the aliphatic acid. Such supramolecular characteristics usher in new features to the photorelease methodology. The thiocarbonyl chromophore extends the absorption of coumarinyl trigger to visible range while enhancing the intersystem crossing (ISC) to the triplet state, making it the reactive state. Despite the non-polar environment within the OA capsules the photocleavage occurs in a heterolytic fashion to release the conjugate base and the used trigger as triplet carbocation in an adiabatic process. Interestingly, the triplet carbocation crosses to the ground singlet surface (closed shell singlet carbocation) with the help of water molecules, possibly aided by C = S chromophore. Utilizing the known excited state dynamics of related thiocoumarinyl and coumarinyl systems, we have identified a few of the important mechanistic features of the photorelease process of 7-diethylaminothio-4-coumarinyl derivatives. Ultrafast excited state dynamic studies and quantum chemical calculations planned should help us better understand the photorelease process so as to effectively exploit the proposed system for potential applications.
more »
« less
- Award ID(s):
- 2204046
- PAR ID:
- 10626448
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Photochemical & Photobiological Sciences
- Volume:
- 23
- Issue:
- 11
- ISSN:
- 1474-905X
- Page Range / eLocation ID:
- 2057 to 2073
- Subject(s) / Keyword(s):
- Supramolecular photochemistry, octa acid capsule,triplet chemistry, phototriggeres, photorelease, photoprotecting group, thiocoumarins, -cleavage, non-Kekule structures.
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Anthocyanins, which are responsible for most of the red, blue and purple colors of fruits and flowers, are very efficient at absorbing and dissipating light energy via excited state proton transfer or charge-transfer mediated internal conversion without appreciable excited triplet state formation. During the maturation of red wines, grape anthocyanins are slowly transformed into pyranoanthocyanins, which have a much more chemically stable pyranoflavylium cation chromophore. Development of straightforward synthetic routes to mono- and disubstituted derivatives of the pyranoflavylium cation chromophore has stimulated theoretical and experimental studies that highlight the interesting absorption and emission properties and redox properties of pyranoflavylium cations. Thus, p-methoxyphenyl substitution enhances the fluorescence quantum yield, while a p-dimethylaminophenyl substituent results in fast decay via a twisted intramolecular charge-transfer (TICT) state. Unlike anthocyanins and their synthetic analogs (flavylium cations), a variety of pyranoflavylium cations form readily detectable excited triplet states that sensitize singlet oxygen formation in solution and exhibit appreciable two-photon absorption cross sections for near-infrared light, suggesting a potential for applications in photodynamic therapy. These excited triplet states have microsecond lifetimes in solution and excited state reduction potentials of at least 1.3 V vs. SCE, features that are clearly desirable in a triplet photoredox catalyst.more » « less
-
We report high-level electronic structure calculations of electronic states in the miniSOG (for mini Singlet Oxygen Generator) photoactive protein designed to produce singlet oxygen upon light exposure. We consider a model system with a riboflavin (RF) chromophore. To better understand the photosensitization process, we compute relevant electronic states of the combined oxygen-chromophore system and their couplings. The calculations suggest that singlet oxygen can be produced both by inter-system crossing, via a triplet state of the RF(T1)×O2(3Σ− g ) character as well as by triplet excitation energy transfer via a singlet state of the same character. Importantly, the former channel produces O2(1Σ+ g ), an excited state of singlet oxygen, which is known to convert with unit efficiency into O2(1∆g) The calculations also provide evidence for the production of the triplet state of the chromophore via internal conversion facilitated by oxygen. Our results provide concrete support to previously hypothesized scenarios.more » « less
-
We explore the photochemistry of polymeric carbon nitride (C 3 N 4 ), an archetypal organic photocatalyst, and derivatives of its structural monomer unit, heptazine (Hz). Through spectroscopic studies and computational analysis, we have observed that Hz derivatives can engage in non-innocent hydrogen bonding interactions with hydroxylic species. The photochemistry of these complexes is influenced by intermolecular nπ*/ππ* mixing of non-bonding orbitals of each component and the relative energy of intermolecular charge-transfer (CT) states. Coupling of the former to the latter appears to facilitate proton-coupled electron transfer (PCET), resulting in biradical products. We have also observed that Hz derivatives exhibit an extremely rare inverted singlet/triplet energy splitting (Δ E ST ). In violation of Hund's multiplicity rules, the lowest energy singlet (S 1 ) is stabilized relative to the lowest triplet (T 1 ) electronic excited state. Exploiting this unique inverted Δ E ST character has obvious implications for transformational discoveries in solid-state OLED lighting and photovoltaics. Harnessing this inverted Δ E ST , paired with light-driven intermolecular PCET reactions, may enable molecular transformations relevant for applications ranging from solar energy storage to new classes of non-triplet photoredox catalysts for pharmaceutical development. To this end, we have explored the possibility of optically controlling the photochemistry of Hz derivatives using ultrafast pump–push–probe spectroscopy. In this case, the excited state branching ratios among locally excited states of the chromophore and the reactive intermolecular CT state can be manipulated with an appropriate secondary “push” excitation pulse. These results indicate that we can predictively redirect chemical reactivity with light in this system, which is an avidly sought achievement in the field of photochemistry. Looking forward, we anticipate future opportunities for controlling heptazine photochemistry, including manipulating PCET reactivity with a diverse array of substrates and optically delivering reducing equivalents with, for example, water as a partial source of electrons and protons. Furthermore, we wholly expect that, over the next decade, materials such as Hz derivatives, that exhibit inverted Δ E ST character, will spawn a significant new research effort in the field of thin-film optoelectronics, where controlling recombination via triplet excitonic states can play a critical role in determining device performance.more » « less
-
Abstract The chemical stability and the low‐lying singlet and triplet excited states of BN‐n‐acenes (n = 1–7) were studied using single reference and multireference methodologies. From the calculations, descriptors such as the singlet‐triplet splitting, the natural orbital (NO) occupations and aromaticity indexes are used to provide structural and energetic analysis. The boron and nitrogen atoms form an isoelectronic pair of two carbon atoms, which was used for the complete substitution of these units in the acene series. The structural analysis confirms the effects originated from the insertion of a uniform pattern of electronegativity difference within the molecular systems. The covalent bonds tend to be strongly polarized which does not happen in the case of a carbon‐only framework. This effect leads to a charge transfer between neighbor atoms resulting in a more strengthened structure, keeping the aromaticity roughly constant along the chain. The singlet‐triplet splitting also agrees with this stability trend, maintaining a consistent gap value for all molecules. The BN‐n‐acenes molecules possess a ground state with monoconfigurational character indicating their electronic stability. The low‐lying singlet excited states have charge transfer character, which proceeds from nitrogen to boron.more » « less
An official website of the United States government

