skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On-demand nanoengineering of in-plane ferroelectric topologies
Hierarchical assemblies of ferroelectric nanodomains, so-called super-domains, can exhibit exotic morphologies that lead to distinct behaviours. Controlling these super-domains reliably is critical for realizing states with desired functional properties. Here we reveal the super-switching mechanism by using a biased atomic force microscopy tip, that is, the switching of the in-plane super-domains, of a model ferroelectric Pb0.6Sr0.4TiO3. We demonstrate that the writing process is dominated by a super-domain nucleation and stabilization process. A complex scanning-probe trajectory enables on-demand formation of intricate centre-divergent, centre-convergent and flux-closure polar structures. Correlative piezoresponse force microscopy and optical spectroscopy confirm the topological nature and tunability of the emergent structures. The precise and versatile nanolithography in a ferroic material and the stability of the generated structures, also validated by phase-field modelling, suggests potential for reliable multi-state nanodevice architectures and, thereby, an alternative route for the creation of tunable topological structures for applications in neuromorphic circuits.  more » « less
Award ID(s):
2132105 2102895 2329111
PAR ID:
10554632
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature
Date Published:
Journal Name:
Nature Nanotechnology
ISSN:
1748-3387
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent advances in ferroic materials have identified topological defects as promising candidates for enabling additional functionalities in future electronic systems. The generation of stable and customizable polar topologies is needed to achieve multistates that enable beyond-binary device architectures. In this study, we show how to autonomously pattern on-demand highly tunable striped closure domains in pristine rhombohedral-phase BiFeO3 thin films through precise scanning of a biased atomic force microscopy tip along carefully designed paths. By employing this strategy, we generate and manipulate closed-loop structures with high spatial resolution in an automated manner, allowing the creation of highly tunable and intricate topological domain structures that exhibit distinct polarization configurations without the need for electrode deposition or complex heterostructure growth. As a proof-of-concept for ferroelectric beyond-binary memory devices, we use such topological domains as multistates, engineering an alphabet and automating the symbolic writing/reading process using autonomous microscopy. The resulting information density is compared with that of current commercially available memory devices, demonstrating the potential of ferroelectric topological domains for multistate information storage applications. 
    more » « less
  2. Abstract Ferroelectrics are being increasingly called upon for electronic devices in extreme environments. Device performance and energy efficiency is highly correlated to clock frequency, operational voltage, and resistive loss. To increase performance it is common to engineer ferroelectric domain structure with highly‐correlated electrical and elastic coupling that elicit fast and efficient collective switching. Designing domain structures with advantageous properties is difficult because the mechanisms involved in collective switching are poorly understood and difficult to investigate. Collective switching is a hierarchical process where the nano‐ and mesoscale responses control the macroscopic properties. Using chemical solution synthesis, epitaxially nearly‐relaxed (100) BaTiO3films are synthesized. Thermal strain induces a strongly‐correlated domain structure with alternating domains of polarization along the [010] and [001] in‐plane axes and 90° domain walls along the [011] or [01] directions. Simultaneous capacitance–voltage measurements and band‐excitation piezoresponse force microscopy revealed strong collective switching behavior. Using a deep convolutional autoencoder, hierarchical switching is automatically tracked and the switching pathway is identified. The collective switching velocities are calculated to be ≈500 cm s−1at 5 V (7 kV cm−1), orders‐of‐magnitude faster than expected. These combinations of properties are promising for high‐speed tunable dielectrics and low‐voltage ferroelectric memories and logic. 
    more » « less
  3. Abstract Solomon rings, upholding the symbol of wisdom with profound historical roots, were widely used as decorations in ancient architecture and clothing. However, it was only recently discovered that such topological structures can be formed by self-organization in biological/chemical molecules, liquid crystals, etc. Here, we report the observation of polar Solomon rings in a ferroelectric nanocrystal, which consist of two intertwined vortices and are mathematically equivalent to a$${4}_{1}^{2}$$ 4 1 2 link in topology. By combining piezoresponse force microscopy observations and phase-field simulations, we demonstrate the reversible switching between polar Solomon rings and vertex textures by an electric field. The two types of topological polar textures exhibit distinct absorption of terahertz infrared waves, which can be exploited in infrared displays with a nanoscale resolution. Our study establishes, both experimentally and computationally, the existence and electrical manipulation of polar Solomon rings, a new form of topological polar structures that may provide a simple way for fast, robust, and high-resolution optoelectronic devices. 
    more » « less
  4. Abstract Reducing the switching energy of ferroelectric thin films remains an important goal in the pursuit of ultralow-power ferroelectric memory and logic devices. Here, we elucidate the fundamental role of lattice dynamics in ferroelectric switching by studying both freestanding bismuth ferrite (BiFeO 3 ) membranes and films clamped to a substrate. We observe a distinct evolution of the ferroelectric domain pattern, from striped, 71° ferroelastic domains (spacing of ~100 nm) in clamped BiFeO 3 films, to large (10’s of micrometers) 180° domains in freestanding films. By removing the constraints imposed by mechanical clamping from the substrate, we can realize a ~40% reduction of the switching voltage and a consequent ~60% improvement in the switching speed. Our findings highlight the importance of a dynamic clamping process occurring during switching, which impacts strain, ferroelectric, and ferrodistortive order parameters and plays a critical role in setting the energetics and dynamics of ferroelectric switching. 
    more » « less
  5. In conventional ferroelectric materials, polarization is an intrinsic property limited by bulk crystallographic structure and symmetry. Recently, it has been demonstrated that polar order can also be accessed using inherently non-polar van der Waals materials through layer-by-layer assembly into heterostructures, wherein interfacial interactions can generate spontaneous, switchable polarization. Here, we show that deliberate interlayer rotations in multilayer vdW heterostructures modulate both the spatial ordering and switching dy- namics of polar domains. The engendered tunability is unparalleled in conventional bulk ferroelectrics or polar bilayers. By means of operando transmission electron microscopy we show how alterations of the relative rotations of three WSe2 layers produce structural poly- types with distinct arrangements of polar domains with either a global or localized switching response. Furthermore, the presence of uniaxial strain generates structural anisotropy that yields a range of switching behaviors, coercivities, and even tunable biased responses. We also provide evidence of mechanical coupling between the two interfaces of the trilayer, a key consideration for the control of switching dynamics in polar multilayer structures more broadly. 
    more » « less