The polarization of the and hyperons along the beam direction has been measured in proton-lead ( ) collisions at a center-of-mass energy per nucleon pair of 8.16 TeV. The data were obtained with the CMS detector at the LHC and correspond to an integrated luminosity of . A significant azimuthal dependence of the hyperon polarization, characterized by the second-order Fourier sine coefficient , is observed. The values decrease as a function of charged particle multiplicity, but increase with transverse momentum. A hydrodynamic model that describes the observed values in nucleus-nucleus collisions by introducing vorticity effects does not reproduce either the sign or the magnitude of the results. These observations pose a challenge to the current theoretical implementation of spin polarization in heavy ion collisions and offer new insights into the origin of spin polarization in hadronic collisions at LHC energies.
more »
« less
New proxies for second-order cumulants of conserved charges in heavy-ion collisions within the EPOS4 framework
Proxies for cumulants of baryon number , electric charge , and strangeness are usually measured in heavy-ion collisions via moments of net-number distribution of given hadronic species. Since these cumulants of conserved charges are expected to be sensitive to the existence of a critical point in the phase diagram of nuclear matter, it is crucial to ensure that the proxies used as substitutes are as close to them as possible. Hence, we use the 4 framework to generate collisions at several collision energies of the BNL Relativistic Heavy Ion Collider beam energy scan. We compute second-order net cumulants of , , and , for which experimental data have been published as well as the corresponding conserved charge cumulants. We then compare them with proxies, defined in previous lattice QCD and hadron resonance gas model studies, which are shown to reproduce more accurately their associated conserved charge cumulants. We investigate the impact of hadronic rescatterings occurring in the late evolution of the system on these quantities, as well as the amount of signal actually originating from the bulk medium which endures a phase transition.
more »
« less
- PAR ID:
- 10626538
- Publisher / Repository:
- APS
- Date Published:
- Journal Name:
- Physical Review C
- Volume:
- 110
- Issue:
- 3
- ISSN:
- 2469-9985
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recent measurements of charm-baryon production in hadronic collisions have questioned the universality of charm-quark fragmentation across different collision systems. In this work the fragmentation of charm quarks into charm baryons is probed, by presenting the first measurement of the longitudinal jet momentum fraction carried by baryons, , in hadronic collisions. The results are obtained in proton-proton ( ) collisions at at the LHC, with baryons and charged (track-based) jets reconstructed in the transverse momentum intervals of and , respectively. The distribution is compared to a measurement of -tagged charged jets in collisions as well as to 8 simulations. The data hints that the fragmentation of charm quarks into charm baryons is softer with respect to charm mesons, in the measured kinematic interval, as predicted by hadronization models which include color correlations beyond leading-color in the string formation. © 2024 CERN, for the ALICE Collaboration2024CERNmore » « less
-
Abstract In nuclear collisions at RHIC energies, an excess of$$\Omega$$ hyperons over$$\bar{\Omega }$$ is observed, indicating that$$\Omega$$ has a net baryon number despitesand$$\bar{s}$$ quarks being produced in pairs. The baryon number in$$\Omega$$ may have been transported from the incident nuclei and/or produced in the baryon-pair production of$$\Omega$$ with other types of anti-hyperons such as$$\bar{\Xi }$$ . To investigate these two scenarios, we propose to measure the correlations between$$\Omega$$ andKand between$$\Omega$$ and anti-hyperons. We use two versions, the default and string-melting, of a multiphase transport (AMPT) model to illustrate the method for measuring the correlation and to demonstrate the general shape of the correlation. We present the$$\Omega$$ -hadron correlations from simulated Au+Au collisions at$$\sqrt{s_\text{NN}} = 7.7$$ and$$14.6 \ \textrm{GeV}$$ and discuss the dependence on the collision energy and on the hadronization scheme in these two AMPT versions. These correlations can be used to explore the mechanism of baryon number transport and the effects of baryon number and strangeness conservation on nuclear collisions.more » « less
-
We explore leptogenesis during a cosmological epoch during which the electroweak force is confined. During weak confinement, there is only one conserved nonanomalous global charge, , which is a linear combination of lepton-number, baryon-number, and hypercharge. The inclusion of heavy Majorana neutrinos leads to an -charge and -violating interaction with a composite scalar, , and composite fermions, , allowing for the generation of an -charge asymmetry, which translates into a baryon asymmetry post deconfinement. Determining the resulting baryon asymmetry as a function of the model parameters, we find that the predicted baryon-asymmetry can match observations for a wide swath of parameter space: a weak confinement scale , the sum of the Standard Model Yukawa couplings , , and a coupling with complex phase . While leptogenesis under the assumption of a standard cosmology relies on the complex phase of the neutrino Yukawa couplings, the asymmetry generated in this novel background cosmology primarily depends on a strong phase from confinement, , and favors negligible -violation in the right-handed neutrino decays.more » « less
-
This search for magnetic monopoles (MMs) and high electric charge objects (HECOs) with spins 0, , and 1, uses for the first time the full MoEDAL detector, exposed to proton-proton collisions at 13 TeV. The results are interpreted in terms of Drell-Yan and photon-fusion pair production. Mass limits on direct production of MMs of up to 10 Dirac magnetic charges and HECOs with electric charge in the range to , were achieved. The charge limits placed on MM and HECO production are currently the strongest in the world. MoEDAL is the only LHC experiment capable of being directly calibrated for highly ionizing particles using heavy ions and with a detector system dedicated to definitively measuring magnetic charge. Published by the American Physical Society2025more » « less
An official website of the United States government

