skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A global analysis of field body temperatures of active squamates in relation to climate and behaviour
Abstract AimSquamate fitness is affected by body temperature, which in turn is influenced by environmental temperatures and, in many species, by exposure to solar radiation. The biophysical drivers of body temperature have been widely studied, but we lack an integrative synthesis of actual body temperatures experienced in the field, and their relationships to environmental temperatures, across phylogeny, behaviour and climate. LocationGlobal (25 countries on six continents). TaxaSquamates (210 species, representing 25 families). MethodsWe measured the body temperatures of 20,231 individuals of squamates in the field while they were active. We examined how body temperatures vary with substrate and air temperatures across taxa, climates and behaviours (basking and diel activity). ResultsHeliothermic lizards had the highest body temperatures. Their body temperatures were the most weakly correlated with substrate and air temperatures. Body temperatures of non‐heliothermic diurnal lizards were similar to heliotherms in relation to air temperature, but similar to nocturnal species in relation to substrate temperatures. The correlation of body temperature with air and substrate temperatures was stronger in diurnal snakes and non‐heliothermic lizards than in heliotherms. Body‐substrate and body‐air temperature correlations varied with mean annual temperatures in all diurnal squamates, especially in heliotherms. Thermal relations vary with behaviour (heliothermy, nocturnality) in cold climates but converge towards the same relation in warm climates. Non‐heliotherms and nocturnal species body temperatures are better explained by substrate temperature than by air temperature. Body temperature distributions become left‐skewed in warmer‐bodied species, especially in colder climates. Main ConclusionsSquamate body temperatures, their frequency distributions and their relation to environmental temperature, are globally influenced by behavioural and climatic factors. For all temperatures and climates, heliothermic species' body temperatures are consistently higher and more stable than in other species, but in regions with warmer climate these differences become less pronounced. A comparable variation was found in non‐heliotherms, but in not nocturnal species whose body temperatures were similar to air and substrate irrespective of the macroclimatic context.  more » « less
Award ID(s):
1950636
PAR ID:
10626720
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Editor(s):
Lenoir, Jonathan
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Global Ecology and Biogeography
Volume:
33
Issue:
4
ISSN:
1466-822X
Subject(s) / Keyword(s):
air temperature body temperature distribution climate, heliotherm lizard, nocturnal reptile snake substrate temperature thermal ecology
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Nocturnal temperatures are increasing at a pace exceeding diurnal temperatures in most parts of the world. The role of warmer nocturnal temperatures in animal ecology has received scant attention and most studies focus on diurnal or daily descriptors of thermal environments' temporal trends. Yet, available evidence from plant and insect studies suggests that organisms can exhibit contrasting physiological responses to diurnal and nocturnal warming. Limiting studies to diurnal trends can thus result in incomplete and misleading interpretations of the ability of species to cope with global warming. Although they are expected to be impacted by warmer nocturnal temperatures, insufficient data are available regarding the night‐time ecology of vertebrate ectotherms. Here, we illustrate the complex effects of nocturnal warming on squamate reptiles, a keystone group of vertebrate ectotherms. Our review includes discussion of diurnal and nocturnal ectotherms, but we mainly focus on diurnal species for which nocturnal warming affects a period dedicated to physiological recovery, and thus may perturb activity patterns and energy balance. We first summarise the physical consequences of nocturnal warming on habitats used by squamate reptiles. Second, we describe how such changes can alter the energy balance of diurnal species. We illustrate this with empirical data from the asp viper (Vipera aspis) and common wall lizard (Podarcis muralis), two diurnal species found throughout western Europe. Third, we make use of a mechanistic approach based on an energy‐balance model to draw general conclusions about the effects of nocturnal temperatures. Fourth, we examine how warmer nights may affect squamates over their lifetime, with potential consequences on individual fitness and population dynamics. We review quantitative evidence for such lifetime effects using recent data derived from a range of studies on the European common lizard (Zootoca vivipara). Finally, we consider the broader eco‐evolutionary ramifications of nocturnal warming and highlight several research questions that require future attention. Our work emphasises the importance of considering the joint influence of diurnal and nocturnal warming on the responses of vertebrate ectotherms to climate warming. 
    more » « less
  2. Abstract Species must adapt to persist in a changing world. As global temperatures rise, how species adapt and respond to thermal shifts is crucial for anticipating global patterns of biodiversity change. Land vertebrates can be divided into two major thermoregulatory strategies, endothermy and ectothermy. One might hypothesize that, given their reputation as being “cold blooded,” ectotherms are thermal generalists, capable of operating across a greater range of body temperatures than endotherms and exhibit greater plasticity and evolvability in body temperature. However, a wide variety of traits and ecologies could modulate responses of thermal physiology to environmental change. Here, we employ macroevolutionary models to estimate the rate of adaptation of thermal physiology across squamates, mammals, and birds in the context of their ecology, physiology, and changing climatic conditions and whether there are fundamental differences in how the three clades respond to their environments. We find stronger relationships between squamates’ body temperature and their environment than in birds and mammals, significant effects of diel activity (nocturnal and diurnal) on body temperature evolution in all clades, and no effect of aquatic/terrestrial habits and rumination on the evolution of body temperature in mammals. Most surprisingly, our findings suggest shared limits on the evolution of thermal physiology across ectothermic and endothermic groups that argue for universal constraints on the rate of evolution in thermal physiology while explaining disparate patterns of body temperature and niche evolution across groups. 
    more » « less
  3. Ringler, Eva (Ed.)
    Abstract Thermoregulatory decisions impact nearly every aspect of the physiology, performance, and ecology of ectotherms. Thus, understanding the factors which influence ectotherm thermoregulatory behaviors across ecological contexts and environmental conditions is essential in predicting responses to novel or changing environments. Specifically, quantifying such behaviors across the entire diel cycle—day and night—is key to understanding the impact on physiological processes that happen during periods of inactivity, such as digestion. Utilizing high-resolution time-series data, we quantified the diel cycle of thermoregulatory behaviors in fed and unfed common wall lizards (Podarcis muralis) over five consecutives days. We first tested the hypothesis that feeding status affects diurnal and nocturnal thermoregulation. Second, we quantified the impact of feeding status on patterns of consistency and correlation within and among individuals in diurnal and nocturnal thermoregulatory behaviors. Lizards modulated their behavior in response to feeding status, conserving energy by choosing lower temperatures when unfed and by seeking higher temperatures when fed. We observed consistent among-individual differences (repeatability) in thermoregulatory behaviors across diurnal and nocturnal periods. Furthermore, diurnal and nocturnal thermoregulatory behaviors were positively correlated within individuals. We demonstrate that this diurnal ectotherm actively thermoregulates during the night, a finding particularly pertinent in urban environments, where artificial light and heat can prolong the active period of lizards. Overall, this research provides valuable insight into the flexible thermoregulation strategies of a species highly successful in expanding its range, demonstrating the importance of considering both diurnal and nocturnal activity. 
    more » « less
  4. Abstract In the past decades, nocturnal temperatures have been playing a disproportionate role in the global warming of the planet. Yet, they remain a neglected factor in studies assessing the impact of global warming on natural populations.Here, we question whether an intense augmentation of nocturnal temperatures is beneficial or deleterious to ectotherms. Physiological performance is influenced by thermal conditions in ectotherms and an increase in temperature by only 2°C is sufficient to induce a disproportionate increase in metabolic expenditure. Warmer nights may expand ectotherms' species thermal niche and open new opportunities for prolonged activities and improve foraging efficiency. However, increased activity may also have deleterious effects on energy balance if exposure to warmer nights reduces resting periods and elevates resting metabolic rate.We assessed whether warmer nights affected an individual's growth, dorsal skin colouration, thermoregulation behaviour, oxidative stress status and parasite load by exposing yearling common lizards (Zootoca vivipara) from four populations to either ambient or high nocturnal temperatures for approximately 5 weeks.Warmer nocturnal temperatures increased the prevalence of ectoparasitic infestation and altered allocation of resources towards structural growth rather than storage. We found no change in markers for oxidative stress. The thermal treatment did not influence thermal preferences, but influenced dorsal skin brightness and luminance, in line with a predicted acclimation response in colder environments to enhance heat gain from solar radiation.Altogether, our results highlight the importance of considering nocturnal warming as an independent factor affecting ectotherms' life history in the context of global climate change. ​ 
    more » « less
  5. Abstract BackgroundThe lungs of squamate reptiles (lizards and snakes) are highly diverse, exhibiting single chambers, multiple chambers, transitional forms with two to three chambers, along with a suite of other anatomical features, including finger‐like epithelial projections into the body cavity known as diverticulae. During embryonic development of the simple, sac‐like lungs of anoles, the epithelium is pushed through the openings of a pulmonary smooth muscle mesh by the forces of luminal fluid pressure. This process of stress ball morphogenesis generates the faveolar epithelium typical of squamate lungs. ResultsHere, we compared embryonic lung development in brown anoles, leopard geckos, and veiled chameleons to determine if stress ball morphogenesis is conserved across squamates and to understand the physical processes that generate transitional‐chambered lungs with diverticulae. We found that epithelial protrusion through the holes in a pulmonary smooth muscle mesh is conserved across squamates. Surprisingly, however, we found that luminal inflation is not conserved. Instead, experimental and computational evidence suggests that leopard geckos and veiled chameleons may generate their faveolae via epithelial folding downstream of epithelial proliferation. Our data also suggest that the transitional chambers and diverticulae of veiled chameleon lungs may develop via apical constriction, a process known to be crucial for airway branching in the bird lung. ConclusionsDistinct morphogenetic mechanisms generate epithelial diversity in squamate lungs, which may underpin their species‐specific physiological and ecological adaptations. 
    more » « less